1
|
Chen J, Hong K, Ma L, Hao X. Effect of time series on the degradation of lignin by Trametes gibbosa: Products and pathways. Int J Biol Macromol 2024; 281:136236. [PMID: 39366598 DOI: 10.1016/j.ijbiomac.2024.136236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/27/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
Lignin is the third most abundant organic resource in nature. The utilization of white-rot fungi for wood degradation effectively circumvents environmental pollution associated with chemical treatments, facilitating the benign decomposition of lignin. Trametes gibbosa is a typical white-rot fungus with rapid growth and strong wood decomposition ability. The lignin content decreased from 23.62 mg/mL to 17.05 mg/mL, which decreased by 27 % in 30 days. The activity of manganese peroxidase increased steadily by 9.44 times. The activities of laccase and lignin peroxidase had the same trend of change and reached peaks of 49.88 U/L and 10.43 U/L on the 25th day, respectively. The change in H2O2 content in vivo was opposite to its trend. For FTIR and GC-MS analysis, the fungi attacked the side chain structure of lignin phenyl propane polymer and benzene ring to crack into low molecular weight aromatic compounds. The side chains of low molecular weight aromatic compounds are oxidized, and long-chain carboxylic acids are formed. Additionally, the absorption peak in the vibration region of the benzene ring skeleton became complex, and the structure of the benzene rings changed. In the beginning, fungal growth was inhibited. Fungal autophagy was aggravated. The metal cation binding proteins of fungi were active, and the genes related to detoxification metabolism were upregulated. The newly produced compounds are related to xenobiotic metabolism. The degradation peak focused on the redox process, and the biological function was enriched in the regulation of macromolecular metabolism, lignin metabolism, and oxidoreductase activity acting on diphenols and related substances as donors. Notably, genes encoding key degradation enzymes, including lcc3, lcc4, phenol-2-monooxygenase, 3-hydroxybenzoate-6-hydroxylase, oxalate decarboxylase, and acetyl-CoA oxidase were significantly upregulated. On the 30th day, the N-glycan biosynthesis pathway was significantly enriched in glycan biosynthesis and metabolism. Weighted correlation network analysis was performed. A total of 1452 genes were clustered in the coral1 module, which were most related to lignin degradation. The genes were significantly enriched in oxidoreductase activity, peptidase activity, cell response to stimulation, signal transduction, lignin metabolism, and phenylpropane metabolism, while the rest were concentrated in glucose metabolism. In this study, the lignin degradation process and products were revealed by T. gibbosa. The molecular mechanism of lignin degradation in different stages was explored. The selection of an efficient utilization time of lignin will help to increase the degradation rate of lignin. This study provides a theoretical basis for the biofuel and biochemical production of lignin. SYNOPSIS: Trametes gibbosa degrades lignin in a pollution-free way, improving the utilization of carbon resources in an environmentally friendly spontaneous cycle. The products are the new way towards sustainable development and low-carbon technology.
Collapse
Affiliation(s)
- Jie Chen
- The Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Forestry, Southwest Forestry University, Kunming 650224, China
| | - Kai Hong
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Ling Ma
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Xin Hao
- The Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, College of Forestry, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
2
|
Niu C, Huang J, Wei L, Wang J, Ran S. Proinflammatory Effect of Membrane Vesicles Derived from Enterococcus faecalis at Neutral and Alkaline pH. J Endod 2024:S0099-2399(24)00480-1. [PMID: 39218147 DOI: 10.1016/j.joen.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION The present study explored the proinflammatory impact of Enterococcus faecalis membrane vesicles (MVs) derived from culture medium at pH levels of 7.4 and 9.0. METHODS E. faecalis MVs were obtained by centrifugation and purified by size-exclusion chromatography. Proteomic analyses were performed on E. faecalis MVs to investigate their components. THP-1 macrophages were exposed to E. faecalis MVs, and the inflammatory cytokines and proteins were evaluated using enzyme-linked immunosorbent assay and immunoblotting. The inflammatory cytokines in the serum of mice with intraperitoneal injection of E. faecalis MVs were evaluated by enzyme-linked immunosorbent assay, and immunophenotyping of spleen cells was investigated with flow cytometry. RESULTS Proteomic analysis revealed 196 proteins in E. faecalis MVs obtained under neutral and alkali conditions; 110 proteins were up-regulated, and 79 proteins were down-regulated by alkaline pH. E. faecalis MVs induced secretion of inflammatory factors interleukin (IL)-1β, IL-6, and tumor necrosis factor alpha in a concentration-dependent manner. Immunoblotting revealed that E. faecalis MVs increased expression of pro-IL-1β, nuclear factor kappa Bp65, and Toll-like receptor 2. In vivo studies demonstrated that E. faecalis MVs significantly promoted secretion of IL-1β in mouse serum, whereas inflammatory cells were activated in the spleen. E. faecalis MVs obtained at a pH of 9.0 showed stronger proinflammatory effects than those obtained under neutral pH. CONCLUSIONS E. faecalis produces MVs that carry specific proteins associated with virulence factors, and these MVs can promote inflammation in vitro and in vivo. E. faecalis MVs obtained under alkaline conditions have a stronger proinflammatory effect.
Collapse
Affiliation(s)
- Chenguang Niu
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jing Huang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lifan Wei
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China; Nucleic Acid Drug Research and Development Institute, CSPC, Shanghai, China
| | - Jia Wang
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shujun Ran
- Department of Endodontics and Operative Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
3
|
Ji S, Liu B, Han J, Kong N, Yang Y, Wang Y, Liu Z. Decrypting biocontrol functions and application modes by genomes data of three Trichoderma Strains/Species. Fungal Genet Biol 2024; 172:103889. [PMID: 38513939 DOI: 10.1016/j.fgb.2024.103889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024]
Abstract
Trichoderma is an excellent biocontrol agent, but most Trichoderma genomes remained at the scaffold level, which greatly limits the research of biocontrol mechanism. Here, we reported the chromosome-level genome of Trichoderma harzianum CGMCC20739 (Tha739), T. asperellum CGMCC11653 (Tas653) and T. atroviride CGMCC40488 (Tat488), they were assembled into 7 chromosomes, genome size were 40 Mb (10,611 genes), 37.3 Mb (10,102 genes) and 36.3 Mb (9,896 genes), respectively. The positive selected genes of three strains were associated to response to stimulus, signaling transduction, immune system and localization. Furthermore, the number of transcription factors in Tha739, Tas653 and Tat488 strains had significant difference, which may contribute to the differential biocontrol function and stress tolerance. The genes related to signal transduction and gene clusters related to antimicrobial compounds in Tha739 were more than those in Tas653 and Tat488, which showed Tha739 may keenly sense other fungi and quickly secret antimicrobial compounds to inhibit other fungi. Tha739 also contained more genes associated to detoxification, antioxidant and nutrition utilization, indicating it had higher stress-tolerance to hostile environments. And the substrate for synthesizing IAA in Tha739 was mainly 3-indole acetonitrile and indole acetaldehyde, but in Tat488, it was indole-3-acetamide, moreover, Tha739 secreted more phosphatase and phytase and was more related to soil phosphorus metabolism, Tat488 secreted more urease and was more related to soil nitrogen metabolism. These candidate genes related to biocontrol function and stress-tolerance laid foundations for construction of functional strains. All above proved the difference in biocontrol function of Tha739, Tas653 and Tat488 strains, however, the defects in individual strains could be compensated for through Trichoderma-biome during the commercial application process of biocontrol Trichoderma strains.
Collapse
Affiliation(s)
- Shida Ji
- College of Forestry, ShenYang Agricultural University, Shenyang 110866, China; College of Horticulture, ShenYang Agricultural University, Shenyang 110866, China
| | - Bin Liu
- College of Forestry, ShenYang Agricultural University, Shenyang 110866, China
| | - Jing Han
- College of Forestry, ShenYang Agricultural University, Shenyang 110866, China
| | - Ning Kong
- College of Forestry, ShenYang Agricultural University, Shenyang 110866, China
| | - Yongfeng Yang
- College of Forestry, ShenYang Agricultural University, Shenyang 110866, China
| | - Yucheng Wang
- College of Forestry, ShenYang Agricultural University, Shenyang 110866, China; School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| | - Zhihua Liu
- College of Forestry, ShenYang Agricultural University, Shenyang 110866, China; School of Forestry, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China.
| |
Collapse
|
4
|
Enriquez-Felix EE, Pérez-Salazar C, Rico-Ruiz JG, Calheiros de Carvalho A, Cruz-Morales P, Villalobos-Escobedo JM, Herrera-Estrella A. Argonaute and Dicer are essential for communication between Trichoderma atroviride and fungal hosts during mycoparasitism. Microbiol Spectr 2024; 12:e0316523. [PMID: 38441469 PMCID: PMC10986496 DOI: 10.1128/spectrum.03165-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/17/2024] [Indexed: 04/06/2024] Open
Abstract
Trichoderma species are known for their mycoparasitic activity against phytopathogenic fungi that cause significant economic losses in agriculture. During mycoparasitism, Trichoderma spp. recognize molecules produced by the host fungus and release secondary metabolites and hydrolytic enzymes to kill and degrade the host's cell wall. Here, we explored the participation of the Trichoderma atroviride RNAi machinery in the interaction with six phytopathogenic fungi of economic importance. We determined that both Argonaute-3 and Dicer-2 play an essential role during mycoparasitism. Using an RNA-Seq approach, we identified that perception, detox, and cell wall degradation depend on the T. atroviride-RNAi when interacting with Alternaria alternata, Rhizoctonia solani AG2, and R. solani AG5. Furthermore, we constructed a gene co-expression network that provides evidence of two gene modules regulated by RNAi, which play crucial roles in essential processes during mycoparasitism. In addition, based on small RNA-seq, we conclude that siRNAs regulate amino acid and carbon metabolism and communication during the Trichoderma-host interaction. Interestingly, our data suggest that siRNAs might regulate allorecognition (het) and transport genes in a cross-species manner. Thus, these results reveal a fine-tuned regulation in T. atroviride dependent on siRNAs that is essential during the biocontrol of phytopathogenic fungi, showing a greater complexity of this process than previously established.IMPORTANCEThere is an increasing need for plant disease control without chemical pesticides to avoid environmental pollution and resistance, and the health risks associated with the application of pesticides are increasing. Employing Trichoderma species in agriculture to control fungal diseases is an alternative plant protection strategy that overcomes these issues without utilizing chemical fungicides. Therefore, understanding the biocontrol mechanisms used by Trichoderma species to antagonize other fungi is critical. Although there has been extensive research about the mechanisms involved in the mycoparasitic capability of Trichoderma species, there are still unsolved questions related to how Trichoderma regulates recognition, attack, and defense mechanisms during interaction with a fungal host. In this work, we report that the Argonaute and Dicer components of the RNAi machinery and the small RNAs they process are essential for gene regulation during mycoparasitism by Trichoderma atroviride.
Collapse
Affiliation(s)
- Eli Efrain Enriquez-Felix
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav Campus Guanajuato, Irapuato, Guanajuato, Mexico
| | - Camilo Pérez-Salazar
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav Campus Guanajuato, Irapuato, Guanajuato, Mexico
| | - José Guillermo Rico-Ruiz
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav Campus Guanajuato, Irapuato, Guanajuato, Mexico
| | | | - Pablo Cruz-Morales
- Novo Nordisk Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
- The LatAmBio Initiative, Irapuato, Guanajuato, Mexico
| | - José Manuel Villalobos-Escobedo
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav Campus Guanajuato, Irapuato, Guanajuato, Mexico
- The LatAmBio Initiative, Irapuato, Guanajuato, Mexico
- Plant and Microbial Biology Department, University of California, Berkeley, Carlifornia, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, Carlifornia, USA
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad-Unidad de Genómica Avanzada, Cinvestav Campus Guanajuato, Irapuato, Guanajuato, Mexico
- The LatAmBio Initiative, Irapuato, Guanajuato, Mexico
| |
Collapse
|
5
|
Wang Y, Wang J, Zhu X, Wang W. Genome and transcriptome sequencing of Trichoderma harzianum T4, an important biocontrol fungus of Rhizoctonia solani, reveals genes related to mycoparasitism. Can J Microbiol 2024; 70:86-101. [PMID: 38314685 DOI: 10.1139/cjm-2023-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Trichoderma harzianum is a well-known biological control strain and a mycoparasite of Rhizoctonia solani. To explore the mechanisms of mycoparasitism, the genome and transcriptome of T. harzianum T4 were both assembled and analyzed in this study. The genome of T. harzianum T4 was assembled into 106 scaffolds, sized 41.25 Mb, and annotated with a total of 8118 predicted genes. We analyzed the transcriptome of T. harzianum T4 against R. solani in a dual culture in three culture periods: before contact (BC), during contact (C), and after contact (AC). Transcriptome sequencing identified 1092, 1222, and 2046 differentially expressed genes (DEGs), respectively. These DEGs, which are involved in pathogen recognition and signal transduction, hydrolase, transporters, antibiosis, and defense-related functional genes, are significantly upregulated in the mycoparasitism process. The results of genome and transcriptome analysis indicated that the mycoparasitism process of T. harzianum T4 was very complex. T. harzianum successfully recognizes and invades host cells and kills plant pathogens by regulating various DEGs at different culture periods. The relative expression levels of the 26 upregulated DEGs were confirmed by RT-qPCR to validate the reliability of the transcriptome data. The results provide insight into the molecular mechanisms underlying T. harzianum T4's mycoparasitic processes, and they provide a potential molecular target for the biological control mechanism of T. harzianum T4.
Collapse
Affiliation(s)
- Yaping Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jian Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaochong Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|