1
|
Li Q, Yuan W, Deng X, Chen Y, Li L, Chen L, Che R, Huang W, Wu Y, Wang C, Wang Z, Zhou M, Fan Z, Wang B. High lead-tolerant mutant Bacillus tropicus AT31-1 from rhizosphere soil of Pu-erh and its remediation mechanism. BIORESOURCE TECHNOLOGY 2025; 416:131751. [PMID: 39521187 DOI: 10.1016/j.biortech.2024.131751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
In this study, we successfully generated the mutant strain Bacillus tropicus AT31-1 from AT31 through atmospheric room-temperature plasma mutagenesis. This mutant strain AT31-1 demonstrated an impressive 48.6 % removal efficiency in 400 mg/L lead medium. Comparative genomic analysis showed that the mutant strain AT31-1 had three mutation sites, which affect the efflux RND transporter permease subunit, the response regulator transcription factor, and a gene with unknown function. The transcriptional analysis showed a notable upregulation in the expression of 283 genes in AT31-1 as lead concentrations increased from 0 to 200 mg/L and then to 400 mg/L, which include zinc-transporting ATPase, ferrous iron transport protein B, NADH dehydrogenase, and others. The Gene ontology function of the peptide metabolic process, along with the KEGG pathway of carbon metabolism were identified as closely linked to the extreme lead tolerance of AT31-1. This study presents novel insights into the lead tolerance mechanisms of bacteria.
Collapse
Affiliation(s)
- Qiang Li
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan 610106, China
| | - Wenxia Yuan
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China
| | - Xiujuan Deng
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yaping Chen
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China
| | - Limei Li
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Lijiao Chen
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Raoqiong Che
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Wei Huang
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yamin Wu
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Chun Wang
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; College of Mechanical and Electrical Engineering, Yunnan Agricultural University, Kunming 650201, China
| | - Zejun Wang
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Miao Zhou
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Zongpei Fan
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Baijuan Wang
- Key Laboratory of Intelligent Organic Tea Garden Construction in Universities of Yunnan Province, Yunnan Organic Tea Industry Intelligent Engineering Research Center, Yunnan Agricultural University, Kunming 650201, China; College of Tea Science, Yunnan Agricultural University, Kunming 650201, China.
| |
Collapse
|
2
|
Acheampong A, Bondzie-Quaye P, Fetisoa MR, Huang Q. Applications of low-temperature plasma technology in microalgae cultivation and mutant breeding: A comprehensive review. BIORESOURCE TECHNOLOGY 2024; 419:132019. [PMID: 39725362 DOI: 10.1016/j.biortech.2024.132019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Low-temperature plasma (LTP) has gained significant attention recently due to its unique properties and potentially wide applications in agriculture, medicine, and food industry. Microalgae have become important to human life since they provide raw materials and bioactive products to industries. This review especially examines how LTP technology can be utilized to enhance microalgae growth and production of various metabolites and bioactive compounds such as astaxanthin, biofuel, lipid, proteins, and polysaccharides through mutagenesis and/or stimulation. Also, this review suggests that LTP may be combined with multi-omics tools such as proteomics, transcriptome, metabolomics and advanced methods such as single-cell analysis techniques to provide a promising strategy for acquiring desirable strains in algal mutant breeding and for enhancing the production of bioactive compounds in the microalgae. By shedding light on the benefits and applications of LTP, we hope to inspire new solutions to the challenges of commercial-scale microalgae development.
Collapse
Affiliation(s)
- Adolf Acheampong
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Precious Bondzie-Quaye
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Monia Ravelonandrasana Fetisoa
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Iron Beam Physical Biology, Institute of Intelligent Machines, Hefei Institute of Physical Sciences, Chinese Academy of Sciences, Hefei 230031, China; Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
3
|
Zhu Z, Ding X, Rang J, Xia L. Application and research progress of ARTP mutagenesis in actinomycetes breeding. Gene 2024; 929:148837. [PMID: 39127415 DOI: 10.1016/j.gene.2024.148837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Atmospheric and room temperature plasma (ARTP) is an emerging artificial mutagenesis breeding technology. In comparison to traditional physical and chemical methods, ARTP technology can induce DNA damage more effectively and obtain mutation strains with stable heredity more easily after screening. It possesses advantages such as simplicity, safety, non-toxicity, and cost-effectiveness, showing high application value in microbial breeding. This article focuses on ARTP mutagenesis breeding of actinomycetes, specifically highlighting the application of ARTP mutagenesis technology in improving the performance of strains and enhancing the biosynthetic capabilities of actinomycetes. We analyzed the advantages and challenges of ARTP technology in actinomycetes breeding and summarized the common features, specific mutation sites and metabolic pathways of ARTP mutagenic strains, which could give guidance for genetic modification. It suggested that the future research work should focus on the establishment of high throughput rapid screening methods and integrate transcriptomics, proteomics, metabonomics and other omics to delve into the genetic regulations and synthetic mechanisms of the bioactive substances in ARTP mutated actinomycetes. This article aims to provide new perspectives for actinomycetes breeding through the establishment and application of ARTP mutagenesis technology, thereby promoting source innovation and the sustainable industrial development of actinomycetes.
Collapse
Affiliation(s)
- Zirong Zhu
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Xuezhi Ding
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Jie Rang
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Liqiu Xia
- Hunan Provincial Key Laboratory of Microbial Molecular Biology, State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
4
|
Turab A, Sun X, Ma Y, Elahi A, Li P, Majeed Y, Sun Y. Transcriptomics and metabonomics reveal molecular mechanisms promoting lipid production in Haematococcus pluvialis co-mutated by atmospheric and room temperature plasma with ethanol. BIORESOURCE TECHNOLOGY 2024; 418:131958. [PMID: 39647716 DOI: 10.1016/j.biortech.2024.131958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Atmospheric and room temperature plasma mutation and co-mutation with ethanol were employed to generate Haematococcus pluvialis mutants AV3 and AV8. These mutants were screened using multiple indices of chlorophyll fluorescence, quantum yield, lethality, growth rate, dry cell weight, and lipid content. Compared to the wild strain, the mutants demonstrated genetic stability (*p > 0.05) over three cultivation periods, with biomass, lipid content, and growth rate increasing by over 16 %, 55 %, and 45 %, respectively. Lipid accumulation was correlated with higher activities of key lipid biosynthesis enzymes, acetyl-CoA carboxylase, and diacylglycerol acyltransferases. Transcriptomic and metabolomic analyses revealed differentially expressed genes and differential metabolites, with significant changes in glutathione, arginine and Pyruvate metabolism pathways. This study provides new insights into the molecular mechanisms behind enhanced lipid synthesis and highlights the potential of plasma mutation for improving lipid production in microalgae, offering a promising avenue for biofuel production.
Collapse
Affiliation(s)
- Ali Turab
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Xin Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yihua Ma
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ahsan Elahi
- School of Chemical Engineering, Zhengzhou University, ZhiHe Environmental Science and Technology Co., Ltd., Zhengzhou 450001, China
| | - Pengfei Li
- Innovation Center for Water Quality Security Technology at Ganjiang River Basin, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Yasir Majeed
- Yasir Majeed- College of Agronomy, Gansu Agricultural University, Lanzhou, China
| | - Youreng Sun
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
5
|
Zhu Z, Chen W, Cao L, Xia Z, Rang J, Hu S, Xia L. ARTP/NTG Compound Mutagenesis Improved the Spinosad Production and the Insecticidal Virulence of Saccharopolyspora Spinosa. Int J Mol Sci 2024; 25:12308. [PMID: 39596372 PMCID: PMC11594378 DOI: 10.3390/ijms252212308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Spinosad is an efficient and broad-spectrum environmentally friendly biopesticide, but its low yield in wild-type Saccharopolyspora spinosa limits its further application. ARTP/NTG compound mutagenesis was used in this study to improve the spinosad titer of S. spinosa and obtain a high-yield mutant-NT24. Compared with the wild-type strain, the fermentation cycle of NT24 was shortened by 2 days and its maximum titer of spinosad reached 858.3 ± 27.7 mg/L, which is 5.12 times more than for the same-period titer of the wild-type strain. In addition, RT-qPCR, resequencing, and targeted metabolomics showed that the upregulation of the key differential genes accD6, fadD, sdhB, oadA, and gntZ caused increased metabolic flux in the tricarboxylic acid cycle and pentose phosphate pathway, suggesting that the accumulation of pyruvate and short-chain acyl-CoA was the primary cause of spinosad accumulation in NT24. This study demonstrates the effectiveness of ARTP mutagenesis in S. spinosa, and provides new insights for the mechanism of spinosad biosynthesis and metabolic engineering in S. spinosa.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Liqiu Xia
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, China; (Z.Z.); (W.C.); (L.C.); (Z.X.); (J.R.); (S.H.)
| |
Collapse
|
6
|
Yin M, An Y, Qi F, Mu R, Ma G, Chen F. Enhancement of non-oleaginous green microalgae Ulothrix for bio-fixing CO 2 and producing biofuels by ARTP mutagenesis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:135. [PMID: 39538227 PMCID: PMC11562528 DOI: 10.1186/s13068-024-02577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Oleaginous green microalgae are often mentioned in algae-based biodiesel industry, but most of them belong to specific genus (Chlorella, Scenedesmus, Botryococcus and Desmodesmus). Thus, the microalgal germplasm resources for biodiesel production are limited. Mutagenesis is regarded as an important technology for expanding germplasm resources. The main purpose of this study is to screen microalgae strains with high carbon dioxide tolerance and high lipid content from mutants derived from indigenous non-oleaginous green microalgae species-Ulothrix SDJZ-17. Two mutants with high CO2 tolerance and high lipid content genetic stability were obtained from the mutants by high-throughput screening, named Ulothrix SDJZ-17-A20 and Ulothrix SDJZ-17-A23. In order to evaluate the potential of CO2 fixation and biofuel production, A20 and A23 were cultured under air and 15% CO2 (v/v) conditions, and their wild-type strains (WT) were used as controls. Under the condition of high CO2 concentration, the growth performance and lipid production capacity of mutant strains A20 and A23 were not only significantly better than those of wild strains, but also better than those of their own cultured under air conditions. Among them, A23 obtained the highest LCE (light conversion efficiency) (14.79%), Fv/Fm (maximal photochemical efficiency of photosystem II) (71.04%) and biomass productivity (81.26 mg L-1 d-1), while A20 obtained the highest lipid content (22.45%). Both mutants can be used as candidate strains for CO2 fixation and biofuel production. By ARTP (atmospheric and room temperature plasma) mutagenesis with high-throughput screening, the mutants with higher CO2 tolerance, photosynthetic efficiency and lipid productivity can be obtained, even if they are derived from non-oleaginous microalgae, which is of great significance for enriching the energy microalgae germplasm bank, alleviating the global warming and energy crisis.
Collapse
Affiliation(s)
- Mingshan Yin
- Engineering Technology Center of Microbial Environmental Remediation and Resource Utilization, Shandong Jianzhu University, Jinan, 250101, China
| | - Yuliang An
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Feng Qi
- Engineering Technology Center of Microbial Environmental Remediation and Resource Utilization, Shandong Jianzhu University, Jinan, 250101, China.
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| | - Ruimin Mu
- Engineering Technology Center of Microbial Environmental Remediation and Resource Utilization, Shandong Jianzhu University, Jinan, 250101, China
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Guixia Ma
- Engineering Technology Center of Microbial Environmental Remediation and Resource Utilization, Shandong Jianzhu University, Jinan, 250101, China
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Feiyong Chen
- Institute of Resources and Environmental Innovation, Shandong Jianzhu University, Jinan, 250101, China
| |
Collapse
|
7
|
Li M, Chen Z, Huo YX. Application Evaluation and Performance-Directed Improvement of the Native and Engineered Biosensors. ACS Sens 2024; 9:5002-5024. [PMID: 39392681 DOI: 10.1021/acssensors.4c01072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Transcription factor (TF)-based biosensors (TFBs) have received considerable attention in various fields due to their capability of converting biosignals, such as molecule concentrations, into analyzable signals, thereby bypassing the dependence on time-consuming and laborious detection techniques. Natural TFs are evolutionarily optimized to maintain microbial survival and metabolic balance rather than for laboratory scenarios. As a result, native TFBs often exhibit poor performance, such as low specificity, narrow dynamic range, and limited sensitivity, hindering their application in laboratory and industrial settings. This work analyzes four types of regulatory mechanisms underlying TFBs and outlines strategies for constructing efficient sensing systems. Recent advances in TFBs across various usage scenarios are reviewed with a particular focus on the challenges of commercialization. The systematic improvement of TFB performance by modifying the constituent elements is thoroughly discussed. Additionally, we propose future directions of TFBs for developing rapid-responsive biosensors and addressing the challenge of application isolation. Furthermore, we look to the potential of artificial intelligence (AI) technologies and various models for programming TFB genetic circuits. This review sheds light on technical suggestions and fundamental instructions for constructing and engineering TFBs to promote their broader applications in Industry 4.0, including smart biomanufacturing, environmental and food contaminants detection, and medical science.
Collapse
Affiliation(s)
- Min Li
- Department of Gastroenterology, Aerospace Center Hospital, College of Life Science, Beijing Institute of Technology, Haidian District, No. 5 South Zhongguancun Street, Beijing 100081, China
| | - Zhenya Chen
- Department of Gastroenterology, Aerospace Center Hospital, College of Life Science, Beijing Institute of Technology, Haidian District, No. 5 South Zhongguancun Street, Beijing 100081, China
- Center for Future Foods, Muyuan Laboratory, 110 Shangding Road, Zhengzhou, Henan 450016, China
| | - Yi-Xin Huo
- Department of Gastroenterology, Aerospace Center Hospital, College of Life Science, Beijing Institute of Technology, Haidian District, No. 5 South Zhongguancun Street, Beijing 100081, China
- Center for Future Foods, Muyuan Laboratory, 110 Shangding Road, Zhengzhou, Henan 450016, China
| |
Collapse
|
8
|
Han J, Ullah M, Andoh V, Khan MN, Feng Y, Guo Z, Chen H. Engineering Bacterial Chitinases for Industrial Application: From Protein Engineering to Bacterial Strains Mutation! A Comprehensive Review of Physical, Molecular, and Computational Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23082-23096. [PMID: 39388625 DOI: 10.1021/acs.jafc.4c06856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Bacterial chitinases are integral in breaking down chitin, the natural polymer in crustacean and insect exoskeletons. Their increasing utilization across various sectors such as agriculture, waste management, biotechnology, food processing, and pharmaceutical industries highlights their significance as biocatalysts. The current review investigates various scientific strategies to maximize the efficiency and production of bacterial chitinases for industrial use. Our goal is to optimize the heterologous production process using physical, molecular, and computational tools. Physical methods focus on isolating, purifying, and characterizing chitinases from various sources to ensure optimal conditions for maximum enzyme activity. Molecular techniques involve gene cloning, site-directed mutation, and CRISPR-Cas9 gene editing as an approach for creating chitinases with improved catalytic activity, substrate specificity, and stability. Computational approaches use molecular modeling, docking, and simulation techniques to accurately predict enzyme-substrate interactions and enhance chitinase variants' design. Integrating multidisciplinary strategies enables the development of highly efficient chitinases tailored for specific industrial applications. This review summarizes current knowledge and advances in chitinase engineering to serve as an indispensable guideline for researchers and industrialists seeking to optimize chitinase production for various uses.
Collapse
Affiliation(s)
- Jianda Han
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Mati Ullah
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Vivian Andoh
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Muhammad Nadeem Khan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, P. R. China
| | - Yong Feng
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Zhongjian Guo
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212000, P. R. China
| |
Collapse
|
9
|
Yan X, He Q, Geng B, Yang S. Microbial Cell Factories in the Bioeconomy Era: From Discovery to Creation. BIODESIGN RESEARCH 2024; 6:0052. [PMID: 39434802 PMCID: PMC11491672 DOI: 10.34133/bdr.0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024] Open
Abstract
Microbial cell factories (MCFs) are extensively used to produce a wide array of bioproducts, such as bioenergy, biochemical, food, nutrients, and pharmaceuticals, and have been regarded as the "chips" of biomanufacturing that will fuel the emerging bioeconomy era. Biotechnology advances have led to the screening, investigation, and engineering of an increasing number of microorganisms as diverse MCFs, which are the workhorses of biomanufacturing and help develop the bioeconomy. This review briefly summarizes the progress and strategies in the development of robust and efficient MCFs for sustainable and economic biomanufacturing. First, a comprehensive understanding of microbial chassis cells, including accurate genome sequences and corresponding annotations; metabolic and regulatory networks governing substances, energy, physiology, and information; and their similarity and uniqueness compared with those of other microorganisms, is needed. Moreover, the development and application of effective and efficient tools is crucial for engineering both model and nonmodel microbial chassis cells into efficient MCFs, including the identification and characterization of biological parts, as well as the design, synthesis, assembly, editing, and regulation of genes, circuits, and pathways. This review also highlights the necessity of integrating automation and artificial intelligence (AI) with biotechnology to facilitate the development of future customized artificial synthetic MCFs to expedite the industrialization process of biomanufacturing and the bioeconomy.
Collapse
Affiliation(s)
| | | | - Binan Geng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences,
Hubei University, Wuhan 430062, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, and School of Life Sciences,
Hubei University, Wuhan 430062, China
| |
Collapse
|
10
|
Zhang J, Zhang F, Dong Z, Zhang W, Sun T, Chen L. Response and acclimation of cyanobacteria to acidification: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173978. [PMID: 38897479 DOI: 10.1016/j.scitotenv.2024.173978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/21/2024]
Abstract
Cyanobacteria, as vital components of aquatic ecosystems, face increasing challenges due to acidification driven by various anthropogenic and natural factors. Understanding how cyanobacteria adapt and respond to acidification is crucial for predicting their ecological dynamics and potential impacts on ecosystem health. This comprehensive review synthesizes current knowledge on the acclimation mechanisms and responses of cyanobacteria to acidification stress. Detailly, ecological roles of cyanobacteria were firstly briefly concluded, followed by the effects of acidification on aquatic ecosystems and cyanobacteria. Then the review focuses on the physiological, biochemical, and molecular strategies employed by cyanobacteria to cope with acidification stress, highlighting key adaptive mechanisms and their ecological implications. Finally, a summary of strategies to enhance acid resistance in cyanobacteria and future directions was discussed. Utilizing omics data and machine learning technology to build a cyanobacterial acid regulatory network allows for predicting the impact of acidification on cyanobacteria and inferring its broader effects on ecosystems. Additionally, acquiring acid-tolerant chassis cells of cyanobacteria through innovative techniques facilitates the advancement of environmentally friendly production of acidic chemicals. By synthesizing empirical evidence and theoretical frameworks, this review aims to elucidate the complex interplay between cyanobacteria and acidification stressors, providing insights for future research directions and ecosystem management strategies.
Collapse
Affiliation(s)
- Jie Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China
| | - Fenfang Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China
| | - Zhengxin Dong
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China; Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, PR China..
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, PR China.
| |
Collapse
|
11
|
Zhang C, Sun Q, Yang L, Ablimit A, Dong H, Wang H, Wang C, Wang C. Mutation Breeding of Monascus to Produce a High Yield of Orange Pigment and Low Citrinin Content Using the ARTP Method. J Fungi (Basel) 2024; 10:553. [PMID: 39194879 DOI: 10.3390/jof10080553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Monascus is a filamentous fungus with a long history of application in China, which can produce a variety of secondary metabolites, including Monascus red pigments, Monascus orange pigments, Monascus yellow pigments, and citrinin. There is widespread attention being paid to natural pigments because of their safety. Among the many natural pigments, orange pigment has a wide range of applications because of its unique color, but current production levels in the orange pigment industry are limited to a certain extent due to the insufficiently wide range of sources and low production. In this study, the ARTP mutation was used to obtain a strain with high-yield orange pigment and low citrinin. The strain RS7 was obtained through two-step mutagenesis, and all three pigments were improved to different degrees. The color value of orange pigment was elevated from the original 108 U/mL to 180 U/mL, an increase of 66.7% compared to the original strain, and the citrinin content was reduced by 69%. The result of microscopic morphology showed that RS7 has more wrinkles and is more convex than the R1 strain, but there was little change between the two strains. Therefore, the ARTP mutation influenced the growth and the biosynthesis of pigments in Monascus. In addition, the conditions of ultrasonic extraction of Monascus pigments were optimized using the response surface, and the separation of pigments was achieved with the method of thin-layer chromatography. Pigment stability results showed that the temperature had no significant effect on orange pigment, while tea polyphenol could improve its stability. This study generated a strain with high-yielding orange pigment and could lay a foundation for the future application of Monascus orange pigment in the food industry.
Collapse
Affiliation(s)
- Chan Zhang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Qing Sun
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Le Yang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Arzugul Ablimit
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Huijun Dong
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Haijiao Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Congcong Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Chengtao Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
12
|
Gao S, Li L, Wei Y, Wen L, Shao S, Wu J, Zong X. Research Progress of ARTP Mutagenesis Technology Based on Citespace Visualization Analysis. Mol Biotechnol 2024:10.1007/s12033-024-01231-5. [PMID: 38990498 DOI: 10.1007/s12033-024-01231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/15/2024] [Indexed: 07/12/2024]
Abstract
Atmospheric and room temperature plasma (ARTP) mutagenesis technology has been developed rapidly in recent years because of its simple operation, safety, environmental friendliness, high mutation rate, and large mutation library capacity. It has been widely used in traditional fields such as food, agriculture, and medicine, and has been gradually applied in emerging fields such as environmental remediation, bioenergy, and microalgae utilization. In this paper, the Web of Science Core Collection (WOSCC) was used as the data source, and the keywords and core literature of ARTP mutagenesis technology were plotted by citespace software, and the research progress and research hotspots of ARTP mutagenesis technology were analyzed. Through citespace visualization analysis, it is concluded that the country with the largest number of studies is China, the institution with the largest number of studies is Jiangnan University, and the author of the most published papers is Jiangnan University. Through keyword analysis, it is concluded that the most widely used ARTP mutagenesis technology is fermentation-related majors, mainly for biosynthesis and microbial research at the molecular level. Among them, the most widely used microorganisms are Escherichia coli and Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Shun Gao
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin, 644000, Sichuan, China
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, Sichuan, China
| | - Li Li
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin, 644000, Sichuan, China
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, Sichuan, China
| | - Yonggong Wei
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, Sichuan, China
| | - Lei Wen
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, Sichuan, China
| | - Shujuan Shao
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, Sichuan, China
| | - Jianhang Wu
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin, 644000, Sichuan, China.
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, Sichuan, China.
| | - Xuyan Zong
- Liquor Brewing Biotechnology and Application Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin, 644000, Sichuan, China.
- College of Bioengineering, Sichuan University of Science and Engineering, Yibin, 644000, Sichuan, China.
| |
Collapse
|
13
|
Hua L, Shi H, Lin Q, Wang H, Gao Y, Zeng J, Lou K, Huo X. Selection and Genetic Analysis of High Polysaccharide-Producing Mutants in Inonotus obliquus. Microorganisms 2024; 12:1335. [PMID: 39065103 PMCID: PMC11278842 DOI: 10.3390/microorganisms12071335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Inonotus obliquus, a medicinal fungus, has garnered significant attention in scientific research and medical applications. In this study, protoplasts of the I. obliquus HS819 strain were prepared using an enzymatic method and achieved a regeneration rate of 5.83%. To enhance polysaccharide production of I. obliquus HS819, atmospheric and room temperature plasma (ARTP) technology was employed for mutagenesis of the protoplasts. Through liquid fermentation, 32 mutant strains exhibiting diverse characteristics in morphology, color of the fermentation broth, mycelial pellet size, and biomass were screened. Secondary screening identified mutant strain A27, which showed a significant increase in polysaccharide production up to 1.67 g/L and a mycelial dry weight of 17.6 g/L, representing 137.67% and 15% increases compared to the HS819 strain, respectively. Furthermore, the fermentation period was reduced by 2 days, and subsequent subculture cultivation demonstrated stable polysaccharide production and mycelial dry weight. The genome resequencing analysis of the HS819 strain and mutant strain A27 revealed 3790 InDel sites and mutations affecting 612 functional genes associated with polysaccharide synthesis. We predict that our findings will be helpful for high polysaccharide production through genetic engineering of I. obliquus.
Collapse
Affiliation(s)
- Lanlan Hua
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Xinjiang Laboratory of SpecialEnvironmental Microbiology, Urumqi 830091, China; (L.H.); (H.S.); (Q.L.); (Y.G.); (J.Z.)
| | - Hongling Shi
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Xinjiang Laboratory of SpecialEnvironmental Microbiology, Urumqi 830091, China; (L.H.); (H.S.); (Q.L.); (Y.G.); (J.Z.)
| | - Qing Lin
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Xinjiang Laboratory of SpecialEnvironmental Microbiology, Urumqi 830091, China; (L.H.); (H.S.); (Q.L.); (Y.G.); (J.Z.)
| | - Haozhong Wang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | - Yan Gao
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Xinjiang Laboratory of SpecialEnvironmental Microbiology, Urumqi 830091, China; (L.H.); (H.S.); (Q.L.); (Y.G.); (J.Z.)
| | - Jun Zeng
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Xinjiang Laboratory of SpecialEnvironmental Microbiology, Urumqi 830091, China; (L.H.); (H.S.); (Q.L.); (Y.G.); (J.Z.)
| | - Kai Lou
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Xinjiang Laboratory of SpecialEnvironmental Microbiology, Urumqi 830091, China; (L.H.); (H.S.); (Q.L.); (Y.G.); (J.Z.)
| | - Xiangdong Huo
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- Xinjiang Laboratory of SpecialEnvironmental Microbiology, Urumqi 830091, China; (L.H.); (H.S.); (Q.L.); (Y.G.); (J.Z.)
| |
Collapse
|
14
|
Li M, Ni Z, Li Z, Yin Y, Liu J, Wu D, Sun Z, Wang L. Research progress on biosynthesis of erythritol and multi-dimensional optimization of production strategies. World J Microbiol Biotechnol 2024; 40:240. [PMID: 38867081 DOI: 10.1007/s11274-024-04043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Erythritol, as a new type of natural sweetener, has been widely used in food, medical, cosmetics, pharmaceutical and other fields due to its unique physical and chemical properties and physiological functions. In recent years, with the continuous development of strategies such as synthetic biology, metabolic engineering, omics-based systems biology and high-throughput screening technology, people's understanding of the erythritol biosynthesis pathway has gradually deepened, and microbial cell factories with independent modification capabilities have been successfully constructed. In this review, the cheap feedstocks for erythritol synthesis are introduced in detail, the environmental factors affecting the synthesis of erythritol and its regulatory mechanism are described, and the tools and strategies of metabolic engineering involved in erythritol synthesis are summarized. In addition, the study of erythritol derivatives is helpful in expanding its application field. Finally, the challenges that hinder the effective production of erythritol are discussed, which lay a foundation for the green, efficient and sustainable production of erythritol in the future and breaking through the bottleneck of production.
Collapse
Affiliation(s)
- Meng Li
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Zifu Ni
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China.
| | - Zhongzeng Li
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Yanli Yin
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Jianguang Liu
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Dapeng Wu
- School of Environment, Henan Normal University, Xinxiang, 453001, China
| | - Zhongke Sun
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China
| | - Le Wang
- School of Biological Engineering, National Engineering Research Center of Wheat and Corn Further Processing, Henan University of Technology, Zhengzhou, 450001, China.
| |
Collapse
|
15
|
Pan J, Zhang J, Wei H, Liu Q, Xu W, Bao Y. Optimizing mycelial protein yield in Pleurotus djamor via ARTP mutagenesis and hybridization strategies. J Biotechnol 2024; 386:64-71. [PMID: 38519035 DOI: 10.1016/j.jbiotec.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/02/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
With the world's population rapidly increasing, the demand for high-quality protein is on the rise. Edible fungi breeding technology stands as a crucial avenue to obtain strains with high yield, high-quality protein, and robust stress resistance. To address the protein supply gap, Atmospheric and Room Temperature Plasma (ARTP) mutagenesis, and spore hybridization techniques were employed to enhance Pleurotus djamor mycelium protein production. Beginning with the original strain Pleurotus djamor JD-1, ARTP was utilized to mutate spore suspension. The optimal treatment time for Pleurotus djamor spores, determined to achieve optimal mortality, was 240 s. Through primary and secondary screenings, 6 mutant strains out of 39 were selected, exhibiting improved protein yield and growth rates compared to the original strain. Among these mutagenic strains, 240S-4 showcased the highest performance, with a mycelial growth rate of 9.5±0.71 mm/d, a biomass of 21.45±0.54 g/L, a protein content of 28.75±0.92%, and a remarkable protein promotion rate of 128.03±7.29%. Additionally, employing spore hybridization and breeding, 7 single-nuclei strains were selected for pin-two hybridization, resulting in 21 hybrid strains. The biomass and protein content of 9 hybrid strains surpassed those of the original strains. One hybrid strain, H-5, exhibited remarkable mycelial protein production, boasting a mycelial growth rate of 26.5±0.7 mm/d, a biomass of 21.70±0.46 g/L, a protein content of 28.44±0.22%, and a protein promotion rate of 128.02±1.73%. Notably, both strains demonstrated about a 28% higher mycelial protein yield than the original strains, indicating comparable effectiveness between hybrid breeding and mutagenesis breeding. Finally, we analyzed the original and selected strains by molecular biological identification, which further proved the effectiveness of the breeding method. These findings present novel insights and serve as a reference for enhancing edible fungi breeding, offering promising avenues to meet the escalating protein demand.
Collapse
Affiliation(s)
- Jing Pan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Jian Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
| | - Hefen Wei
- Nanjing Hi-Tech Biological Technology Research Institute Co.,Ltd., Nanjing 211800, China
| | - Qingguo Liu
- Nanjing Hi-Tech Biological Technology Research Institute Co.,Ltd., Nanjing 211800, China
| | - Wenhui Xu
- Nanjing Hi-Tech Biological Technology Research Institute Co.,Ltd., Nanjing 211800, China
| | - Yunhui Bao
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
16
|
Li D, Shen J, Ding Q, Wu J, Chen X. Recent progress of atmospheric and room-temperature plasma as a new and promising mutagenesis technology. Cell Biochem Funct 2024; 42:e3991. [PMID: 38532652 DOI: 10.1002/cbf.3991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024]
Abstract
At present, atmospheric and room-temperature plasma (ARTP) is regarded as a new and powerful mutagenesis technology with the advantages of environment-friendliness, operation under mild conditions, and fast mutagenesis speed. Compared with traditional mutagenesis strategies, ARTP is used mainly to change the structure of microbial DNA, enzymes, and proteins through a series of physical, chemical, and electromagnetic effects with the organisms, leading to nucleotide breakage, conversion or inversion, causing various DNA damages, so as to screen out the microbial mutants with better biological characteristics. As a result, in recent years, ARTP mutagenesis and the combination of ARTP with traditional mutagenesis have been widely used in microbiology, showing great potential for application. In this review, the recent progress of ARTP mutagenesis in different application fields and bottlenecks of this technology are systematically summarized, with a view to providing a theoretical basis and technical support for better application. Finally, the outlook of ARTP mutagenesis is presented, and we identify the challenges in the field of microbial mutagenesis by ARTP.
Collapse
Affiliation(s)
- Dongao Li
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Jie Shen
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| | - Qiang Ding
- Yichang Sanxia Pharmaceutical Co., Ltd., Yichang City, Hubei Province, China
| | - Jinyong Wu
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| | - Xiangsong Chen
- Institute of Plasma Physics, HFIPS, Chinese Academy of Sciences, Low Temperature Plasma Application Laboratory, Hefei, China
| |
Collapse
|
17
|
Yan CX, Zhang Y, Yang WQ, Ma W, Sun XM, Huang H. Universal and unique strategies for the production of polyunsaturated fatty acids in industrial oleaginous microorganisms. Biotechnol Adv 2024; 70:108298. [PMID: 38048920 DOI: 10.1016/j.biotechadv.2023.108298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023]
Abstract
Polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and arachidonic acid (ARA), are beneficial for reducing blood cholesterol and enhancing memory. Traditional PUFA production relies on extraction from plants and animals, which is unsustainable. Thus, using microorganisms as lipid-producing factories holds promise as an alternative way for PUFA production. Several oleaginous microorganisms have been successfully industrialized to date. These can be divided into universal and specialized hosts according to the products range of biosynthesis. The Yarrowia lipolytica is universal oleaginous host that has been engineered to produce a variety of fatty acids, such as γ-linolenic acid (GLA), EPA, ARA and so on. By contrast, the specialized host are used to produce only certain fatty acids, such as ARA in Mortierella alpina, EPA in Nannochloropsis, and DHA in Thraustochytrids. The metabolic engineering and fermentation strategies for improving PUFA production in universal and specialized hosts are different, which is the subject of this review. In addition, the widely applicable strategies for microbial lipid production that are not specific to individual hosts were also reviewed.
Collapse
Affiliation(s)
- Chun-Xiao Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ying Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wen-Qian Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Wang Ma
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| |
Collapse
|