1
|
On the Impact of Climate Change on Building Energy Consumptions: A Meta-Analysis. ENERGIES 2022. [DOI: 10.3390/en15010354] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The body of literature on climate change impacts on building energy consumption is rising, driven by the urgency to implement adaptation measures. Nevertheless, the multitude of prediction methodologies, future scenarios, as well as climate zones investigated, results in a wide range of expected changes. For these reasons, the present review aims to map climate change impacts on building energy consumption from a quantitative perspective and to identify potential relationships between energy variation and a series of variables that could affect them, including heating and cooling degree-days (HDDs and CDDs), reference period, future time slices and IPCC emission scenarios, by means of statistical techniques. In addition, an overview of the main characteristics of the studies related to locations investigated, building types and methodological approaches are given. To sum up, global warming leads to: (i) decrease in heating consumptions; (ii) increase in cooling consumption; (iii) growth in total consumptions, with notable differences between climate zones. No strong correlation between the parameters was found, although a moderate linear correlation was identified between heating variation and HDDs, and total variation and HDDs. The great variability of the collected data demonstrates the importance of increasing specific impact studies, required to identify appropriate adaptation strategies.
Collapse
|
2
|
Evaluating the Combined Effect of Climate Change and Urban Microclimate on Buildings’ Heating and Cooling Energy Demand in a Mediterranean City. ENERGIES 2021. [DOI: 10.3390/en14185799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Climate change has a major impact on the urban built environment, both with respect to the heating and cooling energy requirements, but also regarding the higher probability of confronting extreme events such as heatwaves. In parallel, the ongoing urbanization, the urban microclimate and the formation of the urban heat island effect, compounding the ongoing climate change, is also a considerable determinant of the building’s energy behavior and the outdoor thermal environment. To evaluate the magnitude of the complex phenomenon, the current research investigates the effect of climate change and urban heat island on heating and cooling energy needs of an urban building unit in Thessaloniki, Greece. The study comparatively evaluates different tools for the generation of future weather datasets, considering both statistical and dynamical downscaling methods, with the latter involving the use of a regional climate model. Based on the output of the regional climate model, another future weather dataset is created, considering not only the general climatic conditions, but also the microclimatic parameters of the examined case study area, under the future climate projections. The generated future weather datasets are then used as an input parameter in the dynamic energy performance simulations with EnergyPlus. For all examined weather datasets, the simulation results show a decrease of the heating energy use, an effect that is strongly counterbalanced by the rise of the cooling energy demand. The obtained simulation results also reveal the contribution of the urban warming of the ongoing climate change, demonstrating the need to perform a holistic analysis for the buildings’ energy needs under future climate conditions.
Collapse
|
3
|
Effect of Climate Changes on Renewable Production in the Mediterranean Climate: Case Study of the Energy Retrofit for a Detached House. SUSTAINABILITY 2021. [DOI: 10.3390/su13168793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the strategies of the European Green Deal is the increment of renewable integration in the civil sector and the mitigation of the impact of climate change. With a statistical and critical approach, the paper analyzes these aspects by means of a case study simulated in a cooling dominated climate. It consists of a single-family house representative of the 1980s Italian building stock. Starting from data monitored between 2015 and 2020, a weather file was built with different methodologies. The first objective was the evaluation of how the method for selecting the solar radiation influences the prevision of photovoltaic productivity. Then, a sensitivity analysis was developed, by means of modified weather files according to representative pathways defined by the Intergovernmental Panel on Climate Change Fifth Assessment Report. The results indicate that the climate changes will bring an increment of photovoltaic productivity while the heating energy need will be reduced until 45% (e.g., in March) and the cooling energy need will be more than double compared with the current conditions. The traditional efficiency measures are not resilient because the increase of the cooling demand could be not balanced. The maximization of installed photovoltaic power is a solution for increasing the resilience. Indeed, going from 3.3 kWp to 6.9 kWp for the worst emission scenario, in a typical summer month (e.g., August), the self-consumption increases until 33% meanwhile the imported electricity passes from 28% to 17%.
Collapse
|
4
|
The Impact Assessment of Climate Change on Building Energy Consumption in Poland. ENERGIES 2021. [DOI: 10.3390/en14144084] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A substantial share of the building sector in global energy demand has attracted scholars to focus on the energy efficiency of the building sector. The building’s energy consumption has been projected to increase due to mass urbanization, high living comfort standards, and, more importantly, climate change. While climate change has potential impacts on the rate of energy consumption in buildings, several studies have shown that these impacts differ from one region to another. In response, this paper aimed to investigate the impact of climate change on the heating and cooling energy demands of buildings as influential variables in building energy consumption in the city of Poznan, Poland. In this sense, through the statistical downscaling method and considering the most recent Typical Meteorological Year (2004–2018) as the baseline, the future weather data for 2050 and 2080 of the city of Poznan were produced according to the HadCM3 and A2 GHG scenario. These generated files were then used to simulate the energy demands in 16 building prototypes of the ASHRAE 90.1 standard. The results indicate an average increase in cooling load and a decrease in heating load at 135% and 40%, respectively, by 2080. Due to the higher share of heating load, the total thermal load of the buildings decreased within the study period. Therefore, while the total thermal load is currently under the decrease, to avoid its rise in the future, serious measures should be taken to control the increased cooling demand and, consequently, thermal load and GHG emissions.
Collapse
|
5
|
Dynamic Evaluation of the Effects of Climate Change on the Energy Renovation of a School in a Mediterranean Climate. SUSTAINABILITY 2021. [DOI: 10.3390/su13116375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper addresses the effects of long-term climate change on retrofit actions on a school building located in a Mediterranean climate. Dynamic energy simulations were performed using Termolog EpiX 11, first with conventional climate data and then with future year climate data exported from the CCWorldWeatherGen computational software. To date, many incentive actions are promoted for school renovations, but are these measures effective in preventing the discomfort that will be found due to overheating generated by climate change? Today, one of the main objectives in retrofit measures is the achievement of ZEB (Zero Energy Building) performance. Achieving this target requires first and foremost a high-performance envelope. This study evaluates the impact of retrofit strategies mostly applied to the school building envelope, over the years, considering three different time horizons, until 2080. Thermal performance indices and indoor operative temperature under free-floating were evaluated. The results highlight that, with a changing climate, it is no longer possible to assume a constant static condition to evaluate retrofit actions, but it is necessary to develop a predictive mathematical model that considers the design variability for future years. There is an urgent necessity to ensure both the safety and comfort of buildings while also anticipating future variations in climate.
Collapse
|