1
|
Zhang A, Zhang Q, Fu H, Zong H, Guo H. Metal-Organic Frameworks and Their Derivatives-Based Nanostructure with Different Dimensionalities for Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303911. [PMID: 37541305 DOI: 10.1002/smll.202303911] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Indexed: 08/06/2023]
Abstract
With the urgent demand for the achievement of carbon neutrality, novel nanomaterials, and environmentally friendly nanotechnologies are constantly being explored and continue to drive the sustainable development of energy storage and conversion installations. Among various candidate materials, metal-organic frameworks (MOFs) and their derivatives with unique nanostructures have attracted increasing attention and intensive investigation for the construction of next generation electrode materials, benefitting from their unique intrinsic characteristics such as large specific surface area, high porosity, and chemical tunability as well as the interconnected channels. Nevertheless, the poor electrochemical conductivity severely limits their application prospects, hence a variety of nanocomposites with multifarious structures have been designed and proposed from different dimensionalities. In this review, recent advances based on MOFs and their derivatives in different dimensionalities ranging from 1D nanopowders to 2D nanofilms and 3D aerogels, as well as 4D self-supporting electrodes for supercapacitors are summarized and highlighted. Furthermore, the key challenges and perspectives of MOFs and their derivatives-based materials for the practical and sustainable electrochemical energy conversion and storage applications are also briefly discussed, which may be served as a guideline for the design of next-generation electrode materials from different dimensionalities.
Collapse
Affiliation(s)
- Aitang Zhang
- Institute for Graphene Applied Technology Innovation, College of Materials Science and Engineering, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Quan Zhang
- Institute for Graphene Applied Technology Innovation, College of Materials Science and Engineering, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Hucheng Fu
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Hanwen Zong
- Institute for Graphene Applied Technology Innovation, College of Materials Science and Engineering, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao, 266071, China
| | - Hanwen Guo
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, China
| |
Collapse
|
2
|
Yuan Y, Liu B, Li H, Li M, Song Y, Wang R, Wang T, Zhang H. Flexible Wearable Sensors in Medical Monitoring. BIOSENSORS 2022; 12:bios12121069. [PMID: 36551036 PMCID: PMC9775172 DOI: 10.3390/bios12121069] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 05/31/2023]
Abstract
The popularity of health concepts and the wave of digitalization have driven the innovation of sensors in the medical field. Such continual development has made sensors progress in the direction of safety, flexibility, and intelligence for continuous monitoring of vital signs, which holds considerable promise for changing the way humans live and even treat diseases. To this end, flexible wearable devices with high performance, such as high sensitivity, high stability, and excellent biodegradability, have attracted strong interest from scientists. Herein, a review of flexible wearable sensors for temperature, heart rate, human motion, respiratory rate, glucose, and pH is highlighted. In addition, engineering issues are also presented, focusing on material selection, sensor fabrication, and power supply. Finally, potential challenges facing current technology and future directions of wearable sensors are also discussed.
Collapse
Affiliation(s)
- Yingying Yuan
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Hui Li
- Department of Nursing, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang 110042, China
| | - Mo Li
- Department of Nursing, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang 110042, China
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang 110042, China
| | - Runze Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Tianlu Wang
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
- Department of Radiotherapy, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang 110042, China
| | - Hangyu Zhang
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Gaurav A, Jain A, Tripathi SK. Review on Fluorescent Carbon/Graphene Quantum Dots: Promising Material for Energy Storage and Next-Generation Light-Emitting Diodes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7888. [PMID: 36431372 PMCID: PMC9695987 DOI: 10.3390/ma15227888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 05/10/2023]
Abstract
Carbon/graphene quantum dots are 0D fluorescent carbon materials with sizes ranging from 2 nm to around 50 nm, with some attractive properties and diverse applications. Different synthesis routes, bandgap variation, higher stability, low toxicity with tunable emission, and the variation of physical and chemical properties with change in size have drawn immense attention to its potential application in different optoelectronics-based materials, especially advanced light-emitting diodes and energy storage devices. WLEDs are a strong candidate for the future of solid-state lighting due to their higher luminance and luminous efficiency. High-performance batteries play an important part in terms of energy saving and storage. In this review article, the authors provide a comparative analysis of recent and ongoing advances in synthesis (top-down and bottom-up), properties, and wide applications in different kinds of next-generation light-emitting diodes such as WLEDs, and energy storage devices such as batteries (Li-B, Na-B) and supercapacitors. Furthermore, they discuss the potential applications and progress of carbon dots in battery applications such as electrode materials. The authors also summarise the developmental stages and challenges in the existing field, the state-of-the-art of carbon/graphene quantum dots, and the potential and possible solutions for the same.
Collapse
Affiliation(s)
- Ashish Gaurav
- Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Amrita Jain
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw, Poland
| | - Santosh Kumar Tripathi
- Department of Physics, School of Physical Sciences, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| |
Collapse
|
4
|
Wang S, Li Y, Xu Q, Fu Q, Guo X, Zheng Y, Zhang W, Cao Z, Li R, Ren J. Facile preparation of graphene@polyaniline nanofiber network/oxidized carbon cloth composites for high-performance flexible solid-state supercapacitors. NANOSCALE 2022; 14:15908-15917. [PMID: 36268823 DOI: 10.1039/d2nr04723c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The complicated preparation process and low energy density of polyaniline (PANI)-based electrodes limit their wide applications in flexible energy storage devices. In this work, a reduced graphene (rGO)-wrapped polyaniline nanofiber network (PANI-NFN)/oxidized carbon cloth (OCC) (rGO@PANI-NFN/OCC) composite was prepared by a facile impregnation method using reactive templates of MnO2 on the surface of OCC. The as-prepared rGO@PANI-NFN/OCC composite exhibited a high area specific capacitance of 4438 mF cm-2 and maintained an initial capacitance of 88.2% after 3000 GCD cycles. It can be used as an independent electrode to construct flexible solid-state supercapacitors (FSSCs), and the FSSCs based on rGO@PANI-NFN/OCC also exhibit a high energy density of 117.9 μW h cm-2 and 88.39% retention after 500 bending cycles, which shows a great prospect for flexible energy storage device applications. The enhanced performance of rGO@PANI-NFN/OCC composites is mainly attributed to the synergistic effect of PANI-NFN structures with a large specific surface area and a rGO wrap layer to reduce the swelling and shrinking of PANI.
Collapse
Affiliation(s)
- Shaohua Wang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Yuying Li
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Qiang Xu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Qiuping Fu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Xinli Guo
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Yanmei Zheng
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Weijie Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Zhen Cao
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Ruiting Li
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| | - Jingxuan Ren
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
5
|
Garces L, Lopez‐Medina M, Padmasree KP, Mtz‐Enriquez AI, Medina‐Velazquez DY, Flores‐Zuñiga H, Oliva J. A Parchment‐Like Supercapacitor Made with Sustainable Graphene Electrodes and its Enhanced Capacitance by Incorporation of the LaSrCoO
3
Perovskite. ChemistrySelect 2022. [DOI: 10.1002/slct.202202199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Luis Garces
- División de Ciencias Básicas e Ingeniería Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas 02200 Azcapotzalco Ciudad de México México
| | - Margarita Lopez‐Medina
- CONACyT-División de Materiales Avanzados Instituto Potosino de Investigación Científica y Tecnológica A. C. 78216 San Luis Potosí S.L.P. México
| | | | | | - Dulce Yolotzin Medina‐Velazquez
- División de Ciencias Básicas e Ingeniería Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas 02200 Azcapotzalco Ciudad de México México
| | - Horacio Flores‐Zuñiga
- CONACyT-División de Materiales Avanzados Instituto Potosino de Investigación Científica y Tecnológica A. C. 78216 San Luis Potosí S.L.P. México
| | - Jorge Oliva
- CONACyT-División de Materiales Avanzados Instituto Potosino de Investigación Científica y Tecnológica A. C. 78216 San Luis Potosí S.L.P. México
| |
Collapse
|
6
|
Liang R, Du Y, Wu J, Li X, Liang T, Yuan J, Xiao P, Chen J. High performance g-C3N4 @NiMoO4/CoMoO4 electrode for supercapacitors. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Controllable synthesis of hierarchical nanoporous carbon@Ni(OH)2 rambutan-like composite microspheres for high-performance hybrid supercapacitor. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103580] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
8
|
Abstract
The use of nonrenewable fossil fuels for energy has increased in recent decades, posing a serious threat to human life. As a result, it is critical to build environmentally friendly and low-cost reliable and renewable energy storage solutions. The supercapacitor is a future energy device because of its higher power density and outstanding cyclic stability with a quick charge and discharge process. Supercapacitors, on the other hand, have a lower energy density than regular batteries. It is well known that the electrochemical characteristic of supercapacitors is strongly dependent on electrode materials. The current review highlights advance in the TMOs for supercapacitor electrodes. In addition, the newly discovered hybrid/pseudo-supercapacitors have been discussed. Metal oxides that are employed as electrode materials are the focus of this study. The discovery of nanostructured electrode materials continues to be a major focus of supercapacitor research. To create high-performance electrode materials from a morphological standpoint, various efforts have been attempted. Lastly, we analyze the supercapacitor’s evolving trend and our perspective for the future generations of supercapacitors.
Collapse
|
9
|
Du Y, Liang R, Wu J, Ye Y, Chen S, Yuan J, Chen J, Xiao P. High-performance quasi-solid-state flexible supercapacitors based on a flower-like NiCo metal–organic framework. RSC Adv 2022; 12:5910-5918. [PMID: 35424579 PMCID: PMC8981592 DOI: 10.1039/d1ra08785a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/10/2022] [Indexed: 11/21/2022] Open
Abstract
NiCo metal–organic framework (MOF) electrodes were prepared by a simple hydrothermal method. The flower-like NiCo MOF electrode exhibited an exciting potential window of 1.2 V and an excellent specific capacitance of 927.1 F g−1 at 1 A g−1. The flower-like NiCo MOF//activated carbon (AC) device delivered a high energy density of 28.5 W hkg−1 at a power density of 400.5 W kg−1 and good cycle stability (95.4% after 5000 cycles at 10 A g−1). Based on the flower-like NiCo MOF electrode, the asymmetric quasi-solid-state flexible supercapacitor (AFSC) was prepared and exhibited good capacitance retention after bending (79% after 100 bends and 64.4% after 200 bends). Furthermore, two AFSCs in series successfully lit up ten parallel red LED lights, showing great application potential in flexible and wearable energy storage devices. The flower-like NiCo MOF prepared by a hydrothermal has a specific capacitance of 927.1 F g−1 at 1 A g−1 and a capacitance retention of 69.7% from 1 A g−1 to 10 A g−1, showing excellent electrochemical performance.![]()
Collapse
Affiliation(s)
- Yongquan Du
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Ruibin Liang
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Junxi Wu
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Yingyi Ye
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Shaoyong Chen
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Jian Yuan
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
| | - Jianwen Chen
- School of Electronic and Information Engineering, Foshan University, Foshan 528000, China
| | - Peng Xiao
- School of Physics and Optoelectronic Engineering, Foshan University, Foshan 528000, China
- Guangdong–Hong Kong–Macao Joint Laboratory for Intelligent Micro–Nano Optoelectronic Technology, Foshan 528000, China
| |
Collapse
|
10
|
Slepchenkov MM, Barkov PV, Glukhova OE. In Silico Study of the Electrically Conductive and Electrochemical Properties of Hybrid Films Formed by Bilayer Graphene and Single-Wall Nanotubes under Axial Stretching. MEMBRANES 2021; 11:658. [PMID: 34564475 PMCID: PMC8465590 DOI: 10.3390/membranes11090658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/17/2022]
Abstract
Using the self-consistent-charge density-functional tight-binding (SCC-DFTB) method, we studied the effect of axial stretching on the electrical conductivity and quantum capacitance of hybrid films formed by AB-stacked bilayer graphene and horizontally oriented single-walled carbon nanotubes (SWCNTs) with indices chirality (12, 6). The paper discusses several topological models of hybrid graphene/SWCNT (12, 6) films, which differ in the width of the graphene layer in the supercell and in the value of the shift between the graphene layers. It is shown that axial stretching has a different effect on the electrical conductivity and quantum capacity of the hybrid graphene/SWCNT (12, 6) film depending on the width of the graphene layer. For a topological model with a minimum width of the graphene layer (2 hexagons) under a 10% stretching strain, the transformation of bilayer graphene from planar to wave-like structures is characteristic. This transformation is accompanied by the appearance of the effect of anisotropy of electrical conductivity and a sharp decrease in the maximum of quantum capacitance. For a topological model with a graphene layer width of 4 hexagons, axial stretching, on the contrary, leads to a decrease in the effect of anisotropy of electrical conductivity and insignificant changes in the quantum capacitance. Based on the obtained results, the prospects for using hybrid graphene/SWCNT (12, 6) films as a material for creating flexible electrodes of supercapacitors are predicted.
Collapse
Affiliation(s)
- Michael M. Slepchenkov
- Institute of Physics, Saratov State University, 410012 Saratov, Russia; (M.M.S.); (P.V.B.)
| | - Pavel V. Barkov
- Institute of Physics, Saratov State University, 410012 Saratov, Russia; (M.M.S.); (P.V.B.)
| | - Olga E. Glukhova
- Institute of Physics, Saratov State University, 410012 Saratov, Russia; (M.M.S.); (P.V.B.)
- Laboratory of Biomedical Nanotechnology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
11
|
Recent Advances in Graphene and Conductive Polymer Composites for Supercapacitor Electrodes: A Review. CRYSTALS 2021. [DOI: 10.3390/cryst11080947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Supercapacitors (SCs) have generated a great deal of interest regarding their prospects for application in energy storage due to their advantages such as long life cycles and high-power density. Graphene is an excellent electrode material for SCs due to its high electric conductivity and highly specific surface area. Conductive polymers (CPs) could potentially become the next-generation SC electrodes because of their low cost, facile synthesis methods, and high pseudocapacitance. Graphene/CP composites show conspicuous electrochemical performance when used as electrode materials for SCs. In this article, we present and summarize the synthesis and electrochemical performance of graphene/CP composites for SCs. Additionally, the method for synthesizing electrode materials for better electrochemical performance is discussed.
Collapse
|
12
|
Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments. NANOMATERIALS 2021; 11:nano11051248. [PMID: 34068548 PMCID: PMC8151924 DOI: 10.3390/nano11051248] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 01/21/2023]
Abstract
In the past decades, the energy consumption of nonrenewable fossil fuels has been increasing, which severely threatens human life. Thus, it is very urgent to develop renewable and reliable energy storage devices with features of environmental harmlessness and low cost. High power density, excellent cycle stability, and a fast charge/discharge process make supercapacitors a promising energy device. However, the energy density of supercapacitors is still less than that of ordinary batteries. As is known to all, the electrochemical performance of supercapacitors is largely dependent on electrode materials. In this review, we firstly introduced six typical transition metal oxides (TMOs) for supercapacitor electrodes, including RuO2, Co3O4, MnO2, ZnO, XCo2O4 (X = Mn, Cu, Ni), and AMoO4 (A = Co, Mn, Ni, Zn). Secondly, the problems of these TMOs in practical application are presented and the corresponding feasible solutions are clarified. Then, we summarize the latest developments of the six TMOs for supercapacitor electrodes. Finally, we discuss the developing trend of supercapacitors and give some recommendations for the future of supercapacitors.
Collapse
|