1
|
McHendrie R, Xiao W, Truong VK, Hashemi R. Gallium-Containing Materials and Their Potential within New-Generation Titanium Alloys for Biomedical Applications. Biomimetics (Basel) 2023; 8:573. [PMID: 38132512 PMCID: PMC10741799 DOI: 10.3390/biomimetics8080573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
With the rising demand for implantable orthopaedic medical devices and the dominance of device-associated infections, extensive research into the development of novel materials has been prompted. Among these, new-generation titanium alloys with biocompatible elements and improved stiffness levels have received much attention. Furthermore, the development of titanium-based materials that can impart antibacterial function has demonstrated promising results, where gallium has exhibited superior antimicrobial action. This has been evidenced by the addition of gallium to various biomaterials including titanium alloys. Therefore, this paper aims to review the antibacterial activity of gallium when incorporated into biomedical materials, with a focus on titanium-based alloys. First, discussion into the development of new-generation Ti alloys that possess biocompatible elements and reduced Young's moduli is presented. This includes a brief review of the influence of alloying elements, processing techniques and the resulting biocompatibilities of the materials found in the literature. The antibacterial effect of gallium added to various materials, including bioglasses, liquid metals, and bioceramics, is then reviewed and discussed. Finally, a key focus is given to the incorporation of gallium into titanium systems for which the inherent mechanical, biocompatible, and antibacterial effects are reviewed and discussed in more detail, leading to suggestions and directions for further research in this area.
Collapse
Affiliation(s)
- Rhianna McHendrie
- College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia;
| | - Wenlong Xiao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China;
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Adelaide, SA 5042, Australia;
| | - Reza Hashemi
- College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia;
| |
Collapse
|
2
|
Kışla D, Gökmen GG, Akdemir Evrendilek G, Akan T, Vlčko T, Kulawik P, Režek Jambrak A, Ozogul F. Recent developments in antimicrobial surface coatings: Various deposition techniques with nanosized particles, their application and environmental concerns. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Mocanu AC, Miculescu F, Constantinescu AE, Pandele MA, Voicu ȘI, Cîmpean A, Miculescu M, Negrescu AM. Selection Route of Precursor Materials in 3D Printing Composite Filament Development for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2359. [PMID: 36984239 PMCID: PMC10058857 DOI: 10.3390/ma16062359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Additive manufacturing or 3D printing technologies might advance the fabrication sector of personalised biomaterials with high-tech precision. The selection of optimal precursor materials is considered the first key-step for the development of new printable filaments destined for the fabrication of products with diverse orthopaedic/dental applications. The selection route of precursor materials proposed in this study targeted two categories of materials: prime materials, for the polymeric matrix (acrylonitrile butadiene styrene (ABS), polylactic acid (PLA)); and reinforcement materials (natural hydroxyapatite (HA) and graphene nanoplatelets (GNP) of different dimensions). HA was isolated from bovine bones (HA particles size < 40 μm, <100 μm, and >125 μm) through a reproducible synthesis technology. The structural (FTIR-ATR, Raman spectroscopy), morphological (SEM), and, most importantly, in vitro (indirect and direct contact studies) features of all precursor materials were comparatively evaluated. The polymeric materials were also prepared in the form of thin plates, for an advanced cell viability assessment (direct contact studies). The overall results confirmed once again the reproducibility of the HA synthesis method. Moreover, the biological cytotoxicity assays established the safe selection of PLA as a future polymeric matrix, with GNP of grade M as a reinforcement and HA as a bioceramic. Therefore, the obtained results pinpointed these materials as optimal for future composite filament synthesis and the 3D printing of implantable structures.
Collapse
Affiliation(s)
- Aura-Cătălina Mocanu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, District 6, 060042 Bucharest, Romania
| | - Florin Miculescu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, District 6, 060042 Bucharest, Romania
| | - Andreea Elena Constantinescu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, District 6, 060042 Bucharest, Romania
| | - Mădălina-Andreea Pandele
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Ștefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Anișoara Cîmpean
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania
| | - Marian Miculescu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, District 6, 060042 Bucharest, Romania
| | - Andreea Mariana Negrescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, District 5, 050095 Bucharest, Romania
| |
Collapse
|
4
|
Nedelcu L, Ferreira JMF, Popa AC, Amarande L, Nan B, Bălescu LM, Geambașu CD, Cioangher MC, Leonat L, Grigoroscuță M, Cristea D, Stroescu H, Ciocoiu RC, Stan GE. Multi-Parametric Exploration of a Selection of Piezoceramic Materials for Bone Graft Substitute Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:901. [PMID: 36769908 PMCID: PMC9917895 DOI: 10.3390/ma16030901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
This work was devoted to the first multi-parametric unitary comparative analysis of a selection of sintered piezoceramic materials synthesised by solid-state reactions, aiming to delineate the most promising biocompatible piezoelectric material, to be further implemented into macro-porous ceramic scaffolds fabricated by 3D printing technologies. The piezoceramics under scrutiny were: KNbO3, LiNbO3, LiTaO3, BaTiO3, Zr-doped BaTiO3, and the (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 solid solution (BCTZ). The XRD analysis revealed the high crystallinity of all sintered ceramics, while the best densification was achieved for the BaTiO3-based materials via conventional sintering. Conjunctively, BCTZ yielded the best combination of functional properties-piezoelectric response (in terms of longitudinal piezoelectric constant and planar electromechanical coupling factor) and mechanical and in vitro osteoblast cell compatibility. The selected piezoceramic was further used as a base material for the robocasting fabrication of 3D macro-porous scaffolds (porosity of ~50%), which yielded a promising compressive strength of ~20 MPa (higher than that of trabecular bone), excellent cell colonization capability, and noteworthy cytocompatibility in osteoblast cell cultures, analogous to the biological control. Thereby, good prospects for the possible development of a new generation of synthetic bone graft substitutes endowed with the piezoelectric effect as a stimulus for the enhancement of osteogenic capacity were settled.
Collapse
Affiliation(s)
- Liviu Nedelcu
- National Institute of Materials Physics, 077125 Magurele, Romania
| | - José M. F. Ferreira
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Materials Institute, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | - Bo Nan
- Department of Materials and Ceramic Engineering, CICECO—Aveiro Materials Institute, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | | | | | - Lucia Leonat
- National Institute of Materials Physics, 077125 Magurele, Romania
| | | | - Daniel Cristea
- Department of Materials Science, Faculty of Materials Science and Engineering, Transilvania University of Brasov, 500068 Brasov, Romania
| | - Hermine Stroescu
- “Ilie Murgulescu” Institute of Physical Chemistry of the Romanian Academy, 060021 Bucharest, Romania
| | - Robert Cătălin Ciocoiu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - George E. Stan
- National Institute of Materials Physics, 077125 Magurele, Romania
| |
Collapse
|
5
|
Mocanu AC, Miculescu F, Stan GE, Pasuk I, Tite T, Pascu A, Butte TM, Ciocan LT. Modulated Laser Cladding of Implant-Type Coatings by Bovine-Bone-Derived Hydroxyapatite Powder Injection on Ti6Al4V Substrates-Part I: Fabrication and Physico-Chemical Characterization. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7971. [PMID: 36431457 PMCID: PMC9695758 DOI: 10.3390/ma15227971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
The surface physico-chemistry of metallic implants governs their successful long-term functionality for orthopedic and dentistry applications. Here, we investigated the feasibility of harmoniously combining two of the star materials currently employed in bone treatment/restoration, namely, calcium-phosphate-based bioceramics (in the form of coatings that have the capacity to enhance osseointegration) and titanium alloys (used as bulk implant materials due to their mechanical performance and lack of systemic toxicity). For the first time, bovine-bone-derived hydroxyapatite (BHA) was layered on top of Ti6Al4V substrates using powder injection laser cladding technology, and then subjected, in this first stage of the research, to an array of physical-chemical analyses. The laser processing set-up involved the conjoined modulation of the BHA-to-Ti ratio (100 wt.% and 50 wt.%) and beam power range (500-1000 W). As such, on each metallic substrate, several overlapped strips were produced and the external surface of the cladded coatings was further investigated. The morphological and compositional (SEM/EDS) evaluations exposed fully covered metallic surfaces with ceramic-based materials, without any fragmentation and with a strong metallurgical bond. The structural (XRD, micro-Raman) analyses showed the formation of calcium titanate as the main phase up to maximum 800 W, accompanied by partial BHA decomposition and the consequential advent of tetracalcium phosphate (markedly above 600 W), independent of the BHA ratio. In addition, the hydrophilic behavior of the coatings was outlined, being linked to the varied surface textures and phase dynamism that emerged due to laser power increment for both of the employed BHA ratios. Hence, this research delineates a series of optimal laser cladding technological parameters for the adequate deposition of bioceramic layers with customized functionality.
Collapse
Affiliation(s)
- Aura-Cătălina Mocanu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, RO-060042 Bucharest, Romania; (A.-C.M.); (T.M.B.)
| | - Florin Miculescu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, RO-060042 Bucharest, Romania; (A.-C.M.); (T.M.B.)
| | - George E. Stan
- National Institute of Materials Physics, 405A Atomistilor Street, RO-077125 Măgurele, Romania; (G.E.S.); (I.P.); (T.T.)
| | - Iuliana Pasuk
- National Institute of Materials Physics, 405A Atomistilor Street, RO-077125 Măgurele, Romania; (G.E.S.); (I.P.); (T.T.)
| | - Teddy Tite
- National Institute of Materials Physics, 405A Atomistilor Street, RO-077125 Măgurele, Romania; (G.E.S.); (I.P.); (T.T.)
| | - Alexandru Pascu
- Department of Materials Engineering and Welding, University Transilvania of Brasov, 29 Eroilor Blvd., RO-500036 Brasov, Romania;
| | - Tudor Mihai Butte
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, RO-060042 Bucharest, Romania; (A.-C.M.); (T.M.B.)
| | - Lucian-Toma Ciocan
- Prosthetics Technology and Dental Materials Department, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, RO-020022 Bucharest, Romania;
| |
Collapse
|
6
|
Kurtuldu F, Mutlu N, Boccaccini AR, Galusek D. Gallium containing bioactive materials: A review of anticancer, antibacterial, and osteogenic properties. Bioact Mater 2022; 17:125-146. [PMID: 35386441 PMCID: PMC8964984 DOI: 10.1016/j.bioactmat.2021.12.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/12/2021] [Accepted: 12/27/2021] [Indexed: 12/23/2022] Open
Abstract
The incorporation of gallium into bioactive materials has been reported to enhance osteogenesis, to influence blood clotting, and to induce anti-cancer and anti-bacterial activity. Gallium-doped biomaterials prepared by various techniques include melt-derived and sol-gel-derived bioactive glasses, calcium phosphate bioceramics, metals and coatings. In this review, we summarize the recently reported developments in antibacterial, anticancer, osteogenesis, and hemostasis properties of Ga-doped biomaterials and briefly outline the mechanisms leading to Ga biological effects. The key finding is that gallium addition to biomaterials has great potential for treating bone-related diseases since it can be efficiently transferred to the desired region at a controllable rate. Besides, it can be used as a potential substitute for antibiotics for the inhibition of infections during the initial and advanced phases of the wound healing process. Ga is also used as an anticancer agent due to the increased concentration of gallium around excessive cell proliferation (tumor) sites. Moreover, we highlight the possibility to design different therapeutic approaches aimed at increasing the efficiency of the use of gallium containing bioactive materials for multifunctional applications.
Collapse
Affiliation(s)
- Fatih Kurtuldu
- FunGlass, Alexander Dubček University of Trenčín, Študentská 2, 911 50, Trenčín, Slovakia
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Nurshen Mutlu
- FunGlass, Alexander Dubček University of Trenčín, Študentská 2, 911 50, Trenčín, Slovakia
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| | - Dušan Galusek
- FunGlass, Alexander Dubček University of Trenčín, Študentská 2, 911 50, Trenčín, Slovakia
- Joint Glass Centre of the IIC SAS, TnUAD and FChFT STU, Študentská 2, 911 50, Trenčín, Slovakia
| |
Collapse
|
7
|
Mocanu AC, Miculescu F, Dascălu CA, Voicu ȘI, Pandele MA, Ciocoiu RC, Batalu D, Dondea S, Mitran V, Ciocan LT. Influence of Ceramic Particles Size and Ratio on Surface-Volume Features of the Naturally Derived HA-Reinforced Filaments for Biomedical Applications. J Funct Biomater 2022; 13:199. [PMID: 36278668 PMCID: PMC9590078 DOI: 10.3390/jfb13040199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
The intersection of the bone tissue reconstruction and additive manufacturing fields promoted the advancement to a prerequisite and new feedstock resource for high-performance bone-like-scaffolds manufacturing. In this paper, the proposed strategy was directed toward the use of bovine-bone-derived hydroxyapatite (HA) for surface properties enhancement and mechanical features reinforcement of the poly(lactic acid) matrix for composite filaments extrusion. The involvement of completely naturally derived materials in the technological process was based on factors such as sustainability, low cost, and a facile and green synthesis route. After the HA isolation and extraction from bovine bones by thermal processing, milling, and sorting, two dependent parameters—the HA particles size (<40 μm, <100 μm, and >125 μm) and ratio (0−50% with increments of 10%)—were simultaneously modulated for the first time during the incorporation into the polymeric matrix. The resulting melt mixtures were divided for cast pellets and extruded filaments development. Based on the obtained samples, the study was further designed to examine several key features by complementary surface−volume characterization techniques. Hence, the scanning electron microscopy and micro-CT results for all specimens revealed a uniform and homogenous dispersion of HA particles and an adequate adhesion at the ceramic/polymer interface, without outline pores, sustained by the shape and surface features of the synthesized ceramic particles. Moreover, an enhanced wettability (contact angle in the ~70−21° range) and gradual mechanical takeover were indicated once the HA ratio increased, independent of the particles size, which confirmed the benefits and feasibility of evenly blending the natural ceramic/polymeric components. The results correlation led to the selection of optimal technological parameters for the synthesis of adequate composite filaments destined for future additive manufacturing and biomedical applications.
Collapse
Affiliation(s)
- Aura-Cătălina Mocanu
- Department of Metallic Materials Science, Physical Metallurgy, Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, 060042 Bucharest, Romania
| | - Florin Miculescu
- Department of Metallic Materials Science, Physical Metallurgy, Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, 060042 Bucharest, Romania
| | - Cătălina-Andreea Dascălu
- Department of Metallic Materials Science, Physical Metallurgy, Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, 060042 Bucharest, Romania
| | - Ștefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Mădălina-Andreea Pandele
- Department of Analytical Chemistry and Environmental Engineering, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu Str., 011061 Bucharest, Romania
| | - Robert-Cătălin Ciocoiu
- Department of Metallic Materials Science, Physical Metallurgy, Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, 060042 Bucharest, Romania
| | - Dan Batalu
- Department of Metallic Materials Science, Physical Metallurgy, Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, 060042 Bucharest, Romania
| | - Sorina Dondea
- Department of Metallic Materials Science, Physical Metallurgy, Faculty of Materials Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, 060042 Bucharest, Romania
| | - Valentina Mitran
- Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| | - Lucian-Toma Ciocan
- Prosthetics Technology and Dental Materials Department, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street., 020022 Bucharest, Romania
| |
Collapse
|
8
|
Taye MB. Biomedical applications of ion-doped bioactive glass: a review. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Correia BL, Gomes ATPC, Noites R, Ferreira JMF, Duarte AS. New and Efficient Bioactive Glass Compositions for Controlling Endodontic Pathogens. NANOMATERIALS 2022; 12:nano12091577. [PMID: 35564288 PMCID: PMC9105659 DOI: 10.3390/nano12091577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023]
Abstract
Endodontic treatment aims to conserve teeth through removing infected tissue, disinfecting, and filling/sealing the root canal. One of the most important treatment steps is the removal of microorganisms to avoid reinfection and consequent tooth loss. Due to increased resistance to intracanal medications, new alternative procedures are needed. Thus, an intracanal medication is suggested using three bioactive glass (BG) compositions (BG1, BG2, and BG3) produced by the sol–gel method, with different molar contents of bactericidal oxides. The BGs were morphologically and physically characterized. Their ability to inhibit the growth of two oral pathogens responsible for the failure of endodontic treatments (E. faecalis and C. albicans) was also studied. The results suggest that BG2 and BG3 can inhibit the growth of E. faecalis after 48 h of incubation, and all BG samples have a significant effect on C. albicans survival.
Collapse
Affiliation(s)
- Bruna L. Correia
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, Campus Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (B.L.C.); (J.M.F.F.)
| | - Ana T. P. C. Gomes
- Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar em Saúde, 3504-505 Viseu, Portugal; (A.T.P.C.G.); (R.N.)
| | - Rita Noites
- Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar em Saúde, 3504-505 Viseu, Portugal; (A.T.P.C.G.); (R.N.)
| | - José M. F. Ferreira
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, Campus Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (B.L.C.); (J.M.F.F.)
| | - Ana S. Duarte
- Universidade Católica Portuguesa, Faculdade de Medicina Dentária, Centro de Investigação Interdisciplinar em Saúde, 3504-505 Viseu, Portugal; (A.T.P.C.G.); (R.N.)
- Correspondence: ; Tel.: +351-232-419-500
| |
Collapse
|
10
|
Electrochemical and In Vitro Biological Evaluation of Bio-Active Coatings Deposited by Magnetron Sputtering onto Biocompatible Mg-0.8Ca Alloy. MATERIALS 2022; 15:ma15093100. [PMID: 35591436 PMCID: PMC9102359 DOI: 10.3390/ma15093100] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/21/2022] [Accepted: 04/23/2022] [Indexed: 12/31/2022]
Abstract
The use of resorbable magnesium alloys in the design of implants represents a new direction in the healthcare domain. Two main research avenues are currently explored for developing or improving metallic biomaterials: (i) increase of their corrosion resistance by designed compositional and structural modifications, and (ii) functionalization of their surfaces by coating with ceramic or polymeric layers. The main objective of this work was to comparatively assess bio-functional coatings (i.e., highly-crystallized hydroxyapatite and silica-rich glass) deposited by radio-frequency magnetron sputtering (RF-MS) on a biodegradable Mg-0.8Ca alloy (0.8 wt.% of Ca). After probing their morphology (by scanning electron microscopy) and structure (by Fourier transform infrared spectroscopy and grazing incidence X-ray diffraction), the corrosion resistance of the RF-MS coated Mg-0.8Ca substrates was electrochemically tested (in synthetic biological media with different degrees of biomimicry), and their cytocompatibility was assessed in osteoblast and fibroblast cell cultures. By collective assessment, the most promising performances, in terms of mass loss (~7% after 12 days), hydrogen release rate (~6 mL/cm2 after 12 days), electrochemical corrosion parameters and cytocompatibility, were obtained for the crystalline HA coating.
Collapse
|
11
|
Li F, Liu F, Huang K, Yang S. Advancement of Gallium and Gallium-Based Compounds as Antimicrobial Agents. Front Bioeng Biotechnol 2022; 10:827960. [PMID: 35186906 PMCID: PMC8855063 DOI: 10.3389/fbioe.2022.827960] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/13/2022] [Indexed: 12/30/2022] Open
Abstract
With the abuse and misuse of antibiotics, antimicrobial resistance has become a challenging issue in the medical system. Iatrogenic and non-iatrogenic infections caused by multidrug-resistant (MDR) pathogens pose serious threats to global human life and health because the efficacy of traditional antibiotics has been greatly reduced and the resulting socio-economic burden has increased. It is important to find and develop non-antibiotic-dependent antibacterial strategies because the development of new antibiotics can hardly keep pace with the emergence of resistant bacteria. Gallium (III) is a multi-target antibacterial agent that has an excellent antibacterial activity, especially against MDR pathogens; thus, a gallium (III)-based treatment is expected to become a new antibacterial strategy. However, some limitations of gallium ions as antimicrobials still exist, including low bioavailability and explosive release. In recent years, with the development of nanomaterials and clathrates, the progress of manufacturing technology, and the emergence of synergistic antibacterial strategies, the antibacterial activities of gallium have greatly improved, and the scope of application in medical systems has expanded. This review summarizes the advancement of current optimization for these key factors. This review will enrich the knowledge about the efficiency and mechanism of various gallium-based antibacterial agents and provide strategies for the improvement of the antibacterial activity of gallium-based compounds.
Collapse
Affiliation(s)
| | - Fengxiang Liu
- *Correspondence: Fengxiang Liu, ; Kai Huang, ; Shengbing Yang,
| | - Kai Huang
- *Correspondence: Fengxiang Liu, ; Kai Huang, ; Shengbing Yang,
| | - Shengbing Yang
- *Correspondence: Fengxiang Liu, ; Kai Huang, ; Shengbing Yang,
| |
Collapse
|
12
|
Stuart B, Stan G, Popa A, Carrington M, Zgura I, Necsulescu M, Grant D. New solutions for combatting implant bacterial infection based on silver nano-dispersed and gallium incorporated phosphate bioactive glass sputtered films: A preliminary study. Bioact Mater 2022; 8:325-340. [PMID: 34541404 PMCID: PMC8427212 DOI: 10.1016/j.bioactmat.2021.05.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 12/26/2022] Open
Abstract
Ag/Ga were incorporated into resorbable orthopaedic phosphate bioactive glasses (PBG, containing P, Ca, Mg, Na, and Fe) thin films to demonstrate their potential to limit growth of Staphylococcus aureus and Escherichia coli in post-operative prosthetic implantation. Dual target consecutive co-sputtering was uniquely employed to produce a 46 nm Ag:PBG composite observed by high resolution TEM to consist of uniformly dispersed ~5 nm metallic Ag nano-particles in a glass matrix. Ga3+ was integrated into a phosphate glass preform target which was magnetron sputtered to film thicknesses of ~400 or 1400 nm. All coatings exhibited high surface energy of 75.4-77.3 mN/m, attributed to the presence of hydrolytic P-O-P structural surface bonds. Degradation profiles obtained in deionized water, nutrient broth and cell culture medium showed varying ion release profiles, whereby Ga release was measured in 1400 nm coating by ICP-MS to be ~6, 27, and 4 ppm respectively, fully dissolving by 24 h. Solubility of Ag nanoparticles was only observed in nutrient broth (~9 ppm by 24 h). Quantification of colony forming units after 24 h showed encouraging antibacterial efficacy towards both S. aureus (4-log reduction for Ag:PBG and 6-log reduction for Ga-PBG≈1400 nm) and E. coli (5-log reduction for all physical vapour deposited layers) strains. Human Hs27 fibroblast and mesenchymal stem cell line in vitro tests indicated good cytocompatibility for all sputtered layers, with a marginal cell proliferation inertia in the case of the Ag:PBG composite thin film. The study therefore highlights the (i) significant manufacturing development via the controlled inclusion of metallic nanoparticles into a PBG glass matrix by dual consecutive target co-sputtering and (ii) potential of PBG resorbable thin-film structures to incorporate and release cytocompatible/antibacterial oxides. Both architectures showed prospective bio-functional performance for a future generation of endo-osseous implant-type coatings.
Collapse
Affiliation(s)
- B.W. Stuart
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - G.E. Stan
- National Institute of Materials Physics, Magurele, RO, 077125, Romania
| | - A.C. Popa
- National Institute of Materials Physics, Magurele, RO, 077125, Romania
- Army Centre for Medical Research, Bucharest, RO, 010195, Romania
| | - M.J. Carrington
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - I. Zgura
- National Institute of Materials Physics, Magurele, RO, 077125, Romania
| | - M. Necsulescu
- Army Centre for Medical Research, Bucharest, RO, 010195, Romania
| | - D.M. Grant
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
13
|
Mocanu AC, Miculescu F, Stan GE, Pandele AM, Pop MA, Ciocoiu RC, Voicu ȘI, Ciocan LT. Fiber-Templated 3D Calcium-Phosphate Scaffolds for Biomedical Applications: The Role of the Thermal Treatment Ambient on Physico-Chemical Properties. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2198. [PMID: 33922963 PMCID: PMC8123353 DOI: 10.3390/ma14092198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 01/12/2023]
Abstract
A successful bone-graft-controlled healing entails the development of novel products with tunable compositional and architectural features and mechanical performances and is, thereby, able to accommodate fast bone in-growth and remodeling. To this effect, graphene nanoplatelets and Luffa-fibers were chosen as mechanical reinforcement phase and sacrificial template, respectively, and incorporated into a hydroxyapatite and brushite matrix derived by marble conversion with the help of a reproducible technology. The bio-products, framed by a one-stage-addition polymer-free fabrication route, were thoroughly physico-chemically investigated (by XRD, FTIR spectroscopy, SEM, and nano-computed tomography analysis, as well as surface energy measurements and mechanical performance assessments) after sintering in air or nitrogen ambient. The experiments exposed that the coupling of a nitrogen ambient with the graphene admixing triggers, in both compact and porous samples, important structural (i.e., decomposition of β-Ca3(PO4)2 into α-Ca3(PO4)2 and α-Ca2P2O7) and morphological modifications. Certain restrictions and benefits were outlined with respect to the spatial porosity and global mechanical features of the derived bone scaffolds. Specifically, in nitrogen ambient, the graphene amount should be set to a maximum 0.25 wt.% in the case of compact products, while for the porous ones, significantly augmented compressive strengths were revealed at all graphene amounts. The sintering ambient or the graphene addition did not interfere with the Luffa ability to generate 3D-channels-arrays at high temperatures. It can be concluded that both Luffa and graphene agents act as adjuvants under nitrogen ambient, and that their incorporation-ratio can be modulated to favorably fit certain foreseeable biomedical applications.
Collapse
Affiliation(s)
- Aura-Cătălina Mocanu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, RO-060042 Bucharest, Romania; (A.-C.M.); (R.C.C.)
| | - Florin Miculescu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, RO-060042 Bucharest, Romania; (A.-C.M.); (R.C.C.)
| | - George E. Stan
- National Institute of Materials Physics, 405A Atomistilor Street, RO-077125 Măgurele, Romania;
| | - Andreea-Mădălina Pandele
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 1-7 Gh. Polizu, RO-011061 Bucharest, Romania; (A.-M.P.); (Ş.I.V.)
- Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7 Gh. Polizu, RO-011061 Bucharest, Romania
| | - Mihai Alin Pop
- Department of Materials Science, Faculty of Materials Science and Engineering, ICDT, University Transilvania of Brasov, 10 Institutului, RO-500484 Brasov, Romania;
| | - Robert Cătălin Ciocoiu
- Department of Metallic Materials Science, Physical Metallurgy, University Politehnica of Bucharest, 313 Splaiul Independentei, J Building, RO-060042 Bucharest, Romania; (A.-C.M.); (R.C.C.)
| | - Ștefan Ioan Voicu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 1-7 Gh. Polizu, RO-011061 Bucharest, Romania; (A.-M.P.); (Ş.I.V.)
| | - Lucian-Toma Ciocan
- Prosthetics Technology and Dental Materials Department, “Carol Davila” University of Medicine and Pharmacy, 37 Dionisie Lupu Street, RO-020022 Bucharest, Romania;
| |
Collapse
|
14
|
Marinas IC, Oprea E, Geana EI, Tutunaru O, Pircalabioru GG, Zgura I, Chifiriuc MC. Valorization of Gleditsia triacanthos Invasive Plant Cellulose Microfibers and Phenolic Compounds for Obtaining Multi-Functional Wound Dressings with Antimicrobial and Antioxidant Properties. Int J Mol Sci 2020; 22:E33. [PMID: 33375126 PMCID: PMC7792949 DOI: 10.3390/ijms22010033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/11/2020] [Accepted: 12/17/2020] [Indexed: 01/13/2023] Open
Abstract
Gleditsia triacanthos is an aggressive invasive species in Eastern Europe, producing a significant number of pods that could represent an inexhaustible resource of raw material for various applications. The aim of this study was to extract cellulose from the Gleditsia triacanthos pods, characterize it by spectrophotometric and UHPLC-DAD-ESI/MS analysis, and use it to fabricate a wound dressing that is multi-functionalized with phenolic compounds extracted from the leaves of the same species. The obtained cellulose microfibers (CM) were functionalized, lyophilized, and characterized by ATR-FTIR and SEM. The water absorption and retention capacity as well as the controlled release of phenolic compounds with antioxidant properties evaluated in temporal dynamics were also determined. The antimicrobial activity against reference and clinical multi-drug-resistant Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacter cloacae, Candida albicans, and Candida parapsilosis strains occurred immediately after the contact with the tested materials and was maintained for 24 h for all tested microbial strains. In conclusion, the multi-functionalized cellulose microfibers (MFCM) obtained from the reproductive organs of an invasive species can represent a promising alternative for the development of functional wound dressings with antioxidant and antimicrobial activity, as well as being a scalable example for designing cost-effective, circular bio-economy approaches to combat the accelerated spread of invasive species.
Collapse
Affiliation(s)
- Ioana Cristina Marinas
- Research Institute of the University of Bucharest-ICUB, Microbiology Department, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (I.C.M.); (G.G.P.); (M.C.C.)
- National Institute of Research & Development for Food Bioresources—IBA Bucharest, 6 Dinu Vintila Street, 021102 Bucharest, Romania
| | - Eliza Oprea
- Department of Organic Chemistry, Biochemistry and Catalysis, Faculty of Chemistry, University of Bucharest, 4-12 Regina Elisabeta, 030018 Bucharest, Romania
| | - Elisabeta-Irina Geana
- National R&D Institute for Cryogenics and Isotopic Technologies—ICIT Rm. Valcea, 4 Uzinei Street, PO Raureni, 240050 Ramnicu Valcea, Romania;
| | - Oana Tutunaru
- National Institute for Research and Development in Microtechnologies IMT-Bucharest, Erou Iancu Nicolae Street, 126A, 077190 Bucharest, Romania;
| | - Gratiela Gradisteanu Pircalabioru
- Research Institute of the University of Bucharest-ICUB, Microbiology Department, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (I.C.M.); (G.G.P.); (M.C.C.)
| | - Irina Zgura
- Department of Optical Processes in Nanostructured Materials, National Institute of Materials Physics Atomistilor Street, 405A, 077125 Magurele, Romania;
| | - Mariana Carmen Chifiriuc
- Research Institute of the University of Bucharest-ICUB, Microbiology Department, Faculty of Biology, University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania; (I.C.M.); (G.G.P.); (M.C.C.)
| |
Collapse
|