Fusteș-Dămoc I, Măluțan T, Mija A. High content chitosan-based materials with high performance properties.
Int J Biol Macromol 2022;
223:263-272. [PMID:
36343834 DOI:
10.1016/j.ijbiomac.2022.10.270]
[Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
Abstract
Chitosan is a valuable biopolymer with a great potential to be used in the design of sustainable materials. Its use typically requires converting the solid powder into a quite dilute solution by disrupting the hydrogen bonding between primary amine and hydroxyl groups. In this work we show that chitosan can be reacted with a tris-aromatic tris-epoxy monomer, generating thermoset materials. The design of the new structures adopted a strategy where the chitosan was mixed in its solid form, to avoid the use of solvents and additional processing steps. A combined polymerization mechanism was proposed, including growth chain polymerization and polyaddition. The obtained materials containing different epoxy/chitosan weight percentage ratios show outstanding properties: high glass transition ~230 °C, high Young's modulus ~2116 and 1716 MPa, tensile strength of ~35 MPa and T5% ~ 300 °C.
Collapse