1
|
Abstract
New highly hydrophobic fluorinated oligoamides were synthesized and studied as materials for the protection of non-varnishable wooden artifacts. The new oligoamides were designed to achieve the best performance (including high chemical affinity to the wood material) and the lowest environmental impact. In order to minimize the risk of bioaccumulation, short perfluoroalkyl side chains were reacted with oligoethylene L-tartaramide (ET), oligoethylene adipamide-L-tartaramide (ETA), oligoethylene succinamide-L-tartaramide (EST), oligoethylene succinamide (ES), and oligodiethylenetriamino-L-tartaramide (DT). Favorable reaction conditions were also adopted to obtain low molecular weight compounds characterized by non-film-forming properties and solubility or dispersibility in environmentally friendly organic solvents. Their behavior in terms of modification of the wood surface characteristics, such as wettability, moisture absorption, and color, was analyzed using a specific diagnostic protocol to rapidly obtain preliminary, but reliable, results for optimizing a future synthesis of new and tailored protectives. The influence of different monomer units on the reactivity, solubility, and hydrophobic properties of different oligoamides was compared showing ESF (contact angle 138.2°) and DF (132.2°) as the most effective products. The study of stability to photochemical degradation confirms ESF as promising protective agents for artefacts of historical and artistic interest in place of long-chain perfluoroalkyl substances (PFAS), products currently subject to restrictions on use.
Collapse
|
2
|
Eco-Friendly Protective Coating to Extend the Life of Art-Works and Structures Made in Porous Stone Materials. COATINGS 2021. [DOI: 10.3390/coatings11111270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The application of hydrophobic treatments to stone surfaces is the most common proven method to prevent, or at least limit, the degradation of stone-made constructions and artworks brought about by the ingress and action of water, in particular in the case of very porous stone materials. To avoid the use of protective products containing harmful solvents, new green products have been proposed. In this paper, an eco-friendly hydrophobic coating, based on a fluorine polymer dispersed in water, was deeply analyzed to evaluate its protective properties, especially for very porous stone substrates. To this aim, a wide characterization of treated and untreated Lecce stone elements, i.e., a stone typical of the Apulia region, was carried out to assess the optimum required amount, the effectiveness and the protective capability, even against graffiti staining, of the green hydrophobic treatment, still allowing the stone to retain adequate vapor permeability. The efficacy of the eco-friendly product was analyzed also after a short time (four weeks) of outdoor exposure. Suitable performance and short-term durability of the green hydrophobic coating were found, comparable or even greater than those reported in the current literature for other widespread commercial products, confirming the capability of the product to preserve porous stone surfaces even in absence of solvents in its formulation. The study also allowed to experiment with the “contact sponge” test as an appropriate method for evaluating the water absorption properties of the stone.
Collapse
|