1
|
Yang J, Li J, Lu J, Sheng X, Liu Y, Wang T, Wang C. Synergistically boosting reaction kinetics and suppressing polyselenide shuttle effect by Ti 3C 2T x/Sb 2Se 3 film anode in high-performance sodium-ion batteries. J Colloid Interface Sci 2023; 649:234-244. [PMID: 37348343 DOI: 10.1016/j.jcis.2023.06.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Antimony selenide (Sb2Se3), with rich resources and high electrochemical activity, including in conversion and alloying reactions, has been regarded as an ideal candidate anode material for sodium-ion batteries. However, the severe volume expansion, sluggish kinetics, and polyselenide shuttle of the Sb2Se3-based anode lead to serious pulverization at high current density, restricting its industrialization. Herein, a unique structure of Sb2Se3 nanowires uniformly anchored between Ti3C2Tx (MXene) nanosheets was prepared by the electrostatic self-assembly method. The MXene can impede the volume expansion of Sb2Se3 nanowires in the sodiation process. Moreover, the Sb2Se3 nanowires can reduce the restacking of Ti3C2Tx nanosheets and enhance electrolyte accessibility. Furthermore, density functional theory calculations confirm the increased reaction kinetics and better sodium storage capability through the composite of Ti3C2Tx with Sb2Se3 and the high adsorption capability of Ti3C2Tx to polyselenides. Therefore, the resultant Sb2Se3/Ti3C2Tx anodes show high rate capability (369.4 mAh/g at 5 A/g) and cycling performance (568.9 and 304.1 mAh/g at 0.1 A/g after 100 cycles and at 1.0 A/g after 500 cycles). More importantly, the full sodium-ion batteries using the Sb2Se3/Ti3C2Tx anode and Na3V2(PO4)3/carbon cathode exhibit high energy/power densities and outstanding cycle performance.
Collapse
Affiliation(s)
- Jian Yang
- Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, China; Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Jiabao Li
- Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, China.
| | - Jiahui Lu
- Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Xiaoxue Sheng
- Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Yu Liu
- Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, China
| | - Tianyi Wang
- Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, China.
| | - Chengyin Wang
- Institute for Innovative Materials and Energy, Faculty of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou City, Jiangsu Province, China.
| |
Collapse
|
2
|
Solid-Solution-Based Metal Coating Enables Highly Reversible, Dendrite-Free Aluminum Anode. COATINGS 2022. [DOI: 10.3390/coatings12050661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aluminum-ion batteries have attracted great interest in the grid-scale energy storage field due to their good safety, low cost and the high abundance of Al. However, Al anodes suffer from severe dendrite growth, especially at high deposition rates. Here, we report a simple strategy for constructing a highly reversible, dendrite-free, Al-based anode through directly introducing a solid-solution-based metal coating to a Zn foil substrate. Compared with Cu foil substrates and bare Al, a Zn foil substrate shows a lower nucleation barrier of Al deposition due to the intrinsic, definite solubility between Al and Zn. During Al deposition, a thin, solid-solution alloy phase is first formed on the surface of the Zn foil substrate and then guides the parallel growth of flake-like Al on Zn substrate. The well-designed, Zn-coated Al (Zn@Al) anode can effectively inhibit dendrite growth and alleviate the corrosion of the Al anode. The fabricated Zn@Al–graphite battery exhibits a high specific capacity of 80 mAh·g−1 and an ultra-long lifespan over 10,000 cycles at a high current density of 20 A·g−1 in low-cost molten salt electrolyte. This work opens a new avenue for the development of stable Al anodes and can provide insights for other metal anode protection.
Collapse
|
3
|
Wang J, Yin H, Wang Z, Gao J, Jiang Q, Xu Y, Chen Z. High‐performance Sn‐based anode with robust lignin‐derived hard carbon support for sodium‐ion batteries. ASIA-PAC J CHEM ENG 2022. [DOI: 10.1002/apj.2768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jie Wang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Huanhuan Yin
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Ziqi Wang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Jiafeng Gao
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Qiwen Jiang
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources Nanjing Forestry University Nanjing China
| | - Yutong Xu
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, College of Chemical Engineering Nanjing Forestry University Nanjing China
| | - Zui Chen
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass Based Green Fuels and Chemicals, College of Chemical Engineering Nanjing Forestry University Nanjing China
| |
Collapse
|