1
|
Catalano A, Ceramella J, Iacopetta D, Marra M, Conforti F, Lupi FR, Gabriele D, Borges F, Sinicropi MS. Aloe vera-An Extensive Review Focused on Recent Studies. Foods 2024; 13:2155. [PMID: 38998660 PMCID: PMC11241682 DOI: 10.3390/foods13132155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Since ancient times, Aloe vera L. (AV) has attracted scientific interest because of its multiple cosmetic and medicinal properties, attributable to compounds present in leaves and other parts of the plant. The collected literature data show that AV and its products have a beneficial influence on human health, both by topical and oral use, as juice or an extract. Several scientific studies demonstrated the numerous biological activities of AV, including, for instance, antiviral, antimicrobial, antitumor, and antifungal. Moreover, its important antidepressant activity in relation to several diseases, including skin disorders (psoriasis, acne, and so on) and prediabetes, is a growing field of research. This comprehensive review intends to present the most significant and recent studies regarding the plethora of AV's biological activities and an in-depth analysis exploring the component/s responsible for them. Moreover, its morphology and chemical composition are described, along with some studies regarding the single components of AV available in commerce. Finally, valorization studies and a discussion about the metabolism and toxicological aspects of this "Wonder Plant" are reported.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70126 Bari, Italy
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca R Lupi
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Domenico Gabriele
- Department of Information, Modeling, Electronics and System Engineering, (D.I.M.E.S.), University of Calabria, Via P. Bucci, Cubo 39C, CS, 87036 Rende, Italy
| | - Fernanda Borges
- CIQUP-IMS-Centro de Investigação em Química da Universidade do Porto, Institute of Molecular Sciences, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
2
|
Guan Y, Lu S, Sun Y, Zhang R, Lu X, Pang L, Wang L. Effect of Tea Tree Essential Oil on the Quality, Antioxidant Activity, and Microbiological Safety of Lightly Processed Lily ( Lilium brownii var. viridulum) during Storage. Foods 2024; 13:2106. [PMID: 38998612 PMCID: PMC11241024 DOI: 10.3390/foods13132106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
The Lanzhou lily is a regionally distinctive vegetable; the emergence of lightly processed lilies has addressed the inconvenience of consuming fresh lilies. However, the cleaning and impurity removal during the processing of lightly processed lily may strip off its original protective barrier and affect the edible quality. As one of the preservation methods, tea tree essential oil (TTEO) has the characteristics of being green, safe, and efficient preservative properties. This study focused on investigating the effects of different concentrations (25 μL/L, 50 μL/L, and 100 μL/L) of TTEO on the quality and microbiological safety of lightly processed lily. The results showed that compared with the control, appropriate concentrations of TTEO treatment could delay weight loss, improve appearance, firmness, and sensory quality, and maintain microbiological safety with the best effect observed at 50 μL/L. Meanwhile, TTEO treatment induced phenylalanine ammonia-lyase activity, thereby increasing the total phenolic content. Furthermore, TTEO enhanced the superoxide dismutase (SOD) and ascorbate peroxidase (APX) activity, which reduced O2-· production rate and H2O2 content. TTEO inhibited lipoxygenase (LOX) activity, reducing the relative conductivity and malondialdehyde content, thereby delaying lipid peroxidation and quality deterioration. This indicates that TTEO could enhance antioxidant capacity by regulating reactive oxygen species (ROS) metabolism and delay the quality deterioration of lightly processed lily by inhibiting lipid peroxidation.
Collapse
Affiliation(s)
- Yuge Guan
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Sainan Lu
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Yan Sun
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Rentao Zhang
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Xinghua Lu
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Linjiang Pang
- School of Food and Health, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Lei Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Zhang X, Zhang R, Zhao S, Wang T, Zhang B, Zhao H. Development, characterization and functional properties of sodium alginate-based films incorporated with Schisandra chinensis extract-natamycin complex. Int J Biol Macromol 2023; 253:127435. [PMID: 37844825 DOI: 10.1016/j.ijbiomac.2023.127435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Because of the impact of petroleum-based polymers on environmental deterioration and the need for safe, efficient, and functional packaging films, a sodium alginate (SA)-based film incorporating a Schisandra chinensis extract (SCE)-natamycin (NA) complex was developed for the desired physical and functional properties. The incorporation of SCE-NA into SA-based films decreased the water vapor transmission rate (WVTR), moisture content (MC), and hydrophilicity of the films and improved their opacity, elongation at break (EAB), and thermal stability. Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray Diffraction (XRD) analyses showed that SA, SCE, and NA had positive interactions and compatibility. In addition, the antimicrobial activity analysis indicated that the SA-SCE-NA film-forming solutions had satisfactory antimicrobial activity against Staphylococcus aureus, Escherichia coli, Saccharomyces cerevisiae, and Aspergillus niger. SA-based composite films have been used to coat cucumbers and blueberries to extend their shelf life. Compared to the neat SA film, the shelf life of cucumbers treated with the SA-SCE-NA film increased by 6 days compared to that in the untreated group at 28 °C, and the shelf life of blueberries increased by 5 days at 4 °C, revealing its potential utilization in food packaging.
Collapse
Affiliation(s)
- Xue Zhang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Rui Zhang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Shuhui Zhao
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Tao Wang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Bolin Zhang
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China
| | - Hongfei Zhao
- College of Biological Science & Biotechnology, Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
4
|
Firdous N, Moradinezhad F, Farooq F, Dorostkar M. Advances in formulation, functionality, and application of edible coatings on fresh produce and fresh-cut products: A review. Food Chem 2023; 407:135186. [PMID: 36525802 DOI: 10.1016/j.foodchem.2022.135186] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
With the increasing population of the world food demand is also increasing but unfortunately, many countries in the world are lacking suitable and economical postharvest preservation techniques to minimize increasing postharvest losses. To ensure food security advanced production technologies, distribution systems and minimum losses should be ensured to give accessibility of food to all population groups. Innovative preservation techniques should be adopted by the agriculture sector to meet intercontinental distribution and demand for fresh produce. The application of the edible coating is a novel technique in postharvest preservation due to its simple application, ecofriendly nature, and effectiveness. Edible coatings can also improve the quality and safety aspects of fresh produce and thus extends shelf life. This review aimed to update information about recent advances in edible coating formulation and application mainly on fresh-cut /minimally processed fruits and vegetables. This information will be helpful for processors to select the best coating material and its effective concentration for different fresh and minimal processed vegetables.
Collapse
Affiliation(s)
- Nida Firdous
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Pakistan
| | - Farid Moradinezhad
- Department of Horticultural Science, Faculty of Agriculture, University of Birjand, Birjand, Iran.
| | - Fatima Farooq
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Pakistan
| | - Maryam Dorostkar
- Department of Horticultural Science, Faculty of Agriculture, University of Birjand, Birjand, Iran
| |
Collapse
|
5
|
Molecular Docking and Efficacy of Aloe vera Gel Based on Chitosan Nanoparticles against Helicobacter pylori and Its Antioxidant and Anti-Inflammatory Activities. Polymers (Basel) 2022; 14:polym14152994. [PMID: 35893958 PMCID: PMC9330094 DOI: 10.3390/polym14152994] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/21/2022] [Indexed: 02/06/2023] Open
Abstract
The medicinal administration of Aloe vera gel has become promising in pharmaceutical and cosmetic applications particularly with the development of the nanotechnology concept. Nowadays, effective H. pylori treatment is a global problem; therefore, the development of natural products with nanopolymers such as chitosan nanoparticles (CSNPs) could represent a novel strategy for the treatment of gastric infection of H. pylori. HPLC analysis of A. vera gel indicated the presence of chlorogenic acid as the main constituent (1637.09 µg/mL) with other compounds pyrocatechol (1637.09 µg/mL), catechin (1552.92 µg/mL), naringenin (528.78 µg/mL), rutin (194.39 µg/mL), quercetin (295.25 µg/mL), and cinnamic acid (37.50 µg/mL). CSNPs and A. vera gel incorporated with CSNPs were examined via TEM, indicating mean sizes of 83.46 nm and 36.54 nm, respectively. FTIR spectra showed various and different functional groups in CSNPs, A. vera gel, and A. vera gel incorporated with CSNPs. Two strains of H. pylori were inhibited using A. vera gel with inhibition zones of 16 and 16.5 mm, while A. vera gel incorporated with CSNPs exhibited the highest inhibition zones of 28 and 30 nm with resistant and sensitive strains, respectively. The minimal inhibitory concentration (MIC) was 15.62 and 3.9 µg/mL, while the minimal bactericidal concentration (MBC) was 15.60 and 7.8 µg/mL with MBC/MIC 1 and 2 indexes using A. vera gel and A. vera gel incorporated with CSNPs, respectively, against the resistance strain. DPPH Scavenging (%) of the antioxidant activity exhibited an IC50 of 138.82 μg/mL using A.vera gel extract, and 81.7 μg/mL when A.vera gel was incorporated with CSNPs. A.vera gel incorporated with CSNPs enhanced the hemolysis inhibition (%) compared to using A.vera gel alone. Molecular docking studies through the interaction of chlorogenic acid and pyrocatechol as the main components of A. vera gel and CSNPs with the crystal structure of the H. pylori (4HI0) protein supported the results of anti-H. pylori activity.
Collapse
|