1
|
Maier C, Egger L, Köck A, Reichmann K. A Review of Gas Sensors for CO 2 Based on Copper Oxides and Their Derivatives. SENSORS (BASEL, SWITZERLAND) 2024; 24:5469. [PMID: 39275379 PMCID: PMC11487424 DOI: 10.3390/s24175469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/16/2024]
Abstract
Buildings worldwide are becoming more thermally insulated, and air circulation is being reduced to a minimum. As a result, measuring indoor air quality is important to prevent harmful concentrations of various gases that can lead to safety risks and health problems. To measure such gases, it is necessary to produce low-cost and low-power-consuming sensors. Researchers have been focusing on semiconducting metal oxide (SMOx) gas sensors that can be combined with intelligent technologies such as smart homes, smart phones or smart watches to enable gas sensing anywhere and at any time. As a type of SMOx, p-type gas sensors are promising candidates and have attracted more interest in recent years due to their excellent electrical properties and stability. This review paper gives a short overview of the main development of sensors based on copper oxides and their composites, highlighting their potential for detecting CO2 and the factors influencing their performance.
Collapse
Affiliation(s)
- Christian Maier
- Materials Center Leoben Forschung GmbH, Roseggerstrasse 12, 8700 Leoben, Austria; (L.E.); (A.K.)
- Institute for Chemistry and Technology of Materials, TU Graz, Stremayrgasse 9, 8010 Graz, Austria;
| | - Larissa Egger
- Materials Center Leoben Forschung GmbH, Roseggerstrasse 12, 8700 Leoben, Austria; (L.E.); (A.K.)
| | - Anton Köck
- Materials Center Leoben Forschung GmbH, Roseggerstrasse 12, 8700 Leoben, Austria; (L.E.); (A.K.)
| | - Klaus Reichmann
- Institute for Chemistry and Technology of Materials, TU Graz, Stremayrgasse 9, 8010 Graz, Austria;
| |
Collapse
|
2
|
Bose D, Harrington MW, Isichenko A, Liu K, Wang J, Chauhan N, Newman ZL, Blumenthal DJ. Anneal-free ultra-low loss silicon nitride integrated photonics. LIGHT, SCIENCE & APPLICATIONS 2024; 13:156. [PMID: 38977674 PMCID: PMC11231177 DOI: 10.1038/s41377-024-01503-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024]
Abstract
Heterogeneous and monolithic integration of the versatile low-loss silicon nitride platform with low-temperature materials such as silicon electronics and photonics, III-V compound semiconductors, lithium niobate, organics, and glasses has been inhibited by the need for high-temperature annealing as well as the need for different process flows for thin and thick waveguides. New techniques are needed to maintain the state-of-the-art losses, nonlinear properties, and CMOS-compatible processes while enabling this next generation of 3D silicon nitride integration. We report a significant advance in silicon nitride integrated photonics, demonstrating the lowest losses to date for an anneal-free process at a maximum temperature 250 °C, with the same deuterated silane based fabrication flow, for nitride and oxide, for an order of magnitude range in nitride thickness without requiring stress mitigation or polishing. We report record low anneal-free losses for both nitride core and oxide cladding, enabling 1.77 dB m-1 loss and 14.9 million Q for 80 nm nitride core waveguides, more than half an order magnitude lower loss than previously reported sub 300 °C process. For 800 nm-thick nitride, we achieve as good as 8.66 dB m-1 loss and 4.03 million Q, the highest reported Q for a low temperature processed resonator with equivalent device area, with a median of loss and Q of 13.9 dB m-1 and 2.59 million each respectively. We demonstrate laser stabilization with over 4 orders of magnitude frequency noise reduction using a thin nitride reference cavity, and using a thick nitride micro-resonator we demonstrate OPO, over two octave supercontinuum generation, and four-wave mixing and parametric gain with the lowest reported optical parametric oscillation threshold per unit resonator length. These results represent a significant step towards a uniform ultra-low loss silicon nitride homogeneous and heterogeneous platform for both thin and thick waveguides capable of linear and nonlinear photonic circuits and integration with low-temperature materials and processes.
Collapse
Affiliation(s)
- Debapam Bose
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Mark W Harrington
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Andrei Isichenko
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Kaikai Liu
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Jiawei Wang
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Nitesh Chauhan
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | | | - Daniel J Blumenthal
- Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
3
|
Nur-E-Alam M, Maurya DK, Yap BK, Rajabi A, Doroody C, Bin Mohamed H, Khandaker MU, Islam MA, Kiong Tiong S. Physical-Vapor-Deposited Metal Oxide Thin Films for pH Sensing Applications: Last Decade of Research Progress. SENSORS (BASEL, SWITZERLAND) 2023; 23:8194. [PMID: 37837022 PMCID: PMC10575361 DOI: 10.3390/s23198194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023]
Abstract
In the last several decades, metal oxide thin films have attracted significant attention for the development of various existing and emerging technological applications, including pH sensors. The mandate for consistent and precise pH sensing techniques has been increasing across various fields, including environmental monitoring, biotechnology, food and agricultural industries, and medical diagnostics. Metal oxide thin films grown using physical vapor deposition (PVD) with precise control over film thickness, composition, and morphology are beneficial for pH sensing applications such as enhancing pH sensitivity and stability, quicker response, repeatability, and compatibility with miniaturization. Various PVD techniques, including sputtering, evaporation, and ion beam deposition, used to fabricate thin films for tailoring materials' properties for the advanced design and development of high-performing pH sensors, have been explored worldwide by many research groups. In addition, various thin film materials have also been investigated, including metal oxides, nitrides, and nanostructured films, to make very robust pH sensing electrodes with higher pH sensing performance. The development of novel materials and structures has enabled higher sensitivity, improved selectivity, and enhanced durability in harsh pH environments. The last decade has witnessed significant advancements in PVD thin films for pH sensing applications. The combination of precise film deposition techniques, novel materials, and surface functionalization strategies has led to improved pH sensing performance, making PVD thin films a promising choice for future pH sensing technologies.
Collapse
Affiliation(s)
- Mohammad Nur-E-Alam
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (B.K.Y.); (A.R.); (C.D.); (H.B.M.); (S.K.T.)
- School of Science, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
- School of Engineering and Technology, Central Queensland University Australia, Melbourne, VIC 3000, Australia
| | - Devendra Kumar Maurya
- National Centre for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur 208016, India;
| | - Boon Kar Yap
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (B.K.Y.); (A.R.); (C.D.); (H.B.M.); (S.K.T.)
- College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| | - Armin Rajabi
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (B.K.Y.); (A.R.); (C.D.); (H.B.M.); (S.K.T.)
| | - Camellia Doroody
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (B.K.Y.); (A.R.); (C.D.); (H.B.M.); (S.K.T.)
- College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| | - Hassan Bin Mohamed
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (B.K.Y.); (A.R.); (C.D.); (H.B.M.); (S.K.T.)
- College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, Bandar Sunway 47500, Selangor, Malaysia;
| | - Mohammad Aminul Islam
- Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Selangor, Malaysia;
| | - Sieh Kiong Tiong
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia; (B.K.Y.); (A.R.); (C.D.); (H.B.M.); (S.K.T.)
- College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, Kajang 43000, Selangor, Malaysia
| |
Collapse
|
4
|
Guo Y, Zhang Z, Yao B, Chai J, Zhang S, Liu J, Zhao Z, Xue C. Fabrication and Performance of a Ta 2O 5 Thin Film pH Sensor Manufactured Using MEMS Processes. SENSORS (BASEL, SWITZERLAND) 2023; 23:6061. [PMID: 37447910 DOI: 10.3390/s23136061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
In this work, a capacitive pH sensor consisting of Ta2O5 functional film is designed and fabricated by employing MEMS-based procedures. The Ta2O5 thin film has an amorphous microstructure, and its surface roughness is less than 3.17 nm. A signal processing circuit and a software filtering algorithm are also designed to measure the pH value, thus improving the detection accuracy and anti-interference ability. Good linearity (R2 = 0.99904) and sensitivity (63.12 mV/pH) are recorded for the proposed sensing element in the range of pH 2~12. In addition, the sensor's drift and hysteresis are equal to 5.1 mV and 5.8 mV, respectively. The enhanced sensing performance in combination with the facile miniaturization process, low fabrication cost, and suitability for mass production render the fabricated sensor attractive for applications where pH change measurements in a water environment are required.
Collapse
Affiliation(s)
- Yuzhen Guo
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
| | - Zengxing Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
- Tan Kah Kee Innovation Laboratory, Xiamen 361005, China
| | - Bin Yao
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
| | - Jin Chai
- Xiamen Zehuo Industry Digital Research Institute Co., Ltd., Xiamen 361005, China
| | - Shiqiang Zhang
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
| | - Jianwei Liu
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
| | - Zhou Zhao
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
| | - Chenyang Xue
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan 030051, China
- Tan Kah Kee Innovation Laboratory, Xiamen 361005, China
| |
Collapse
|
5
|
Abubakar S, Tan ST, Liew JYC, Talib ZA, Sivasubramanian R, Vaithilingam CA, Indira SS, Oh WC, Siburian R, Sagadevan S, Paiman S. Controlled Growth of Semiconducting ZnO Nanorods for Piezoelectric Energy Harvesting-Based Nanogenerators. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1025. [PMID: 36985919 PMCID: PMC10056750 DOI: 10.3390/nano13061025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Zinc oxide (ZnO) nanorods have attracted considerable attention in recent years owing to their piezoelectric properties and potential applications in energy harvesting, sensing, and nanogenerators. Piezoelectric energy harvesting-based nanogenerators have emerged as promising new devices capable of converting mechanical energy into electric energy via nanoscale characterizations such as piezoresponse force microscopy (PFM). This technique was used to study the piezoresponse generated when an electric field was applied to the nanorods using a PFM probe. However, this work focuses on intensive studies that have been reported on the synthesis of ZnO nanostructures with controlled morphologies and their subsequent influence on piezoelectric nanogenerators. It is important to note that the diatomic nature of zinc oxide as a potential solid semiconductor and its electromechanical influence are the two main phenomena that drive the mechanism of any piezoelectric device. The results of our findings confirm that the performance of piezoelectric devices can be significantly improved by controlling the morphology and initial growth conditions of ZnO nanorods, particularly in terms of the magnitude of the piezoelectric coefficient factor (d33). Moreover, from this review, a proposed facile synthesis of ZnO nanorods, suitably produced to improve coupling and switchable polarization in piezoelectric devices, has been reported.
Collapse
Affiliation(s)
- Shamsu Abubakar
- Department of Physics, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Physics, Yobe State University, Damaturu P.M.B. 1144, Yobe State, Nigeria
| | - Sin Tee Tan
- Department of Physics, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | | | - Zainal Abidin Talib
- Department of Physics, College of Natural Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea
| | - Ramsundar Sivasubramanian
- Faculty of Innovation and Technology, Taylor’s University Malaysia, No. 1, Jalan Taylor’s, Subang Jaya 47500, Selangor, Malaysia
| | | | - Sridhar Sripadmanabhan Indira
- Faculty of Innovation and Technology, Taylor’s University Malaysia, No. 1, Jalan Taylor’s, Subang Jaya 47500, Selangor, Malaysia
| | - Won-Chun Oh
- Department of Advanced Materials Science and Engineering, Hanseo University, Seosan-si 356-706, Chungnam, Republic of Korea
| | - Rikson Siburian
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Padang Bulan, Medan 20155, Indonesia
| | - Suresh Sagadevan
- Nanotechnology & Catalysis Research Centre, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Suriati Paiman
- Department of Physics, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Functional Nanotechnology Devices Laboratory (FNDL), Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
6
|
Paul Shylendra S, Wajrak M, Alameh K. Fabrication and Optimization of Nafion as a Protective Membrane for TiN-Based pH Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:2331. [PMID: 36850929 PMCID: PMC9965570 DOI: 10.3390/s23042331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
In this study, a solid-state modified pH sensor with RF magnetron sputtering technology was developed. The sensor consists of an active electrode consisting of a titanium nitride (TiN) film with a protective membrane of Nafion and a reference glass electrode of Ag/AgCl. The sensitivity of the pH sensor was investigated. Results show a sensor with excellent characteristics: sensitivity of 58.6 mV/pH for pH values from 2 to 12, very short response time of approximately 12 s in neutral pH solutions, and stability of less than 0.9 mV in 10 min duration. Further improvement in the performance of the TiN sensor was studied by application of a Nafion protective membrane. Nafion improves the sensor sensitivity close to Nernstian by maintaining a linear response. This paves the way to implement TiN with Nafion protection to block any interference species during real time applications in biosensing and medical diagnostic pH sensors.
Collapse
|
7
|
Shylendra SP, Wajrak M, Alameh K, Kang JJ. Nafion Modified Titanium Nitride pH Sensor for Future Biomedical Applications. SENSORS (BASEL, SWITZERLAND) 2023; 23:699. [PMID: 36679497 PMCID: PMC9865854 DOI: 10.3390/s23020699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
pH sensors are increasingly being utilized in the biomedical field and have been implicated in health applications that aim to improve the monitoring and treatment of patients. In this work, a previously developed Titanium Nitride (TiN) solid-state pH sensor is further enhanced, with the potential to be used for pH regulation inside the human body and for other biomedical, industrial, and environmental applications. One of the main limitations of existing solid-state pH sensors is their reduced performance in high redox mediums. The potential shift E0 value of the previously developed TiN pH electrode in the presence of oxidizing or reducing agents is 30 mV. To minimize this redox shift, a Nafion-modified TiN electrode was developed, tested, and evaluated in various mediums. The Nafion-modified electrode has been shown to shift the E0 value by only 2 mV, providing increased accuracy in highly redox samples while maintaining acceptable reaction times. Overcoming the redox interference for pH measurement enables several advantages of the Nafion-modified TiN electrode over the standard pH glass electrode, implicating its use in medical diagnosis, real-time health monitoring, and further development of miniaturized smart sensors.
Collapse
Affiliation(s)
| | - Magdalena Wajrak
- School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Kamal Alameh
- School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - James Jin Kang
- School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
- International College, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
8
|
Gomez-Iriarte GA, Pentón-Madrigal A, de Oliveira LAS, Sinnecker JP. XPS Study in BiFeO 3 Surface Modified by Argon Etching. MATERIALS 2022; 15:ma15124285. [PMID: 35744344 PMCID: PMC9227888 DOI: 10.3390/ma15124285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/25/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023]
Abstract
This paper reports an XPS surface study of pure phase BiFeO3 thin film produced and later etched by pure argon ions. Analysis of high-resolution spectra from Fe 2p, Bi 4f and 5d, O 1s, and the valence band, exhibited mainly Fe3+ and Bi3+ components, but also reveal Fe2+. High-energy argon etching induces the growth of Fe(0) and Bi(0) and an increment of Fe2+, as expected. The BiFeO3 semiconductor character is preserved despite the oxygen loss, an interesting aspect for the study of the photovoltaic effect through oxygen vacancies in some ceramic films. The metal-oxygen bonds in O 1s spectra are related only to one binding energy contrary to the split from bismuth and iron reported in other works. All these data evidence that the low-pressure argon atmosphere is proved to be efficient to produce pure phase BiFeO3, even after argon etching.
Collapse
Affiliation(s)
- Grecia Alejandra Gomez-Iriarte
- Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, Rio de Janeiro 22290-180, RJ, Brazil
- Correspondence: (G.A.G.-I.); (J.P.S.); Tel.: +55-21-2141-7173 (G.A.G.-I.); +55-21-2141-7509 (J.P.S.)
| | | | - Luiz Augusto Sousa de Oliveira
- Núcleo Multidisciplinar de Pesquisas em Nanotecnologia, Universidade Federal do Rio de Janeiro, Rodovia Washington Luiz, km 104, 5, Duque de Caxias 25240-005, RJ, Brazil;
| | - João Paulo Sinnecker
- Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, Rio de Janeiro 22290-180, RJ, Brazil
- Correspondence: (G.A.G.-I.); (J.P.S.); Tel.: +55-21-2141-7173 (G.A.G.-I.); +55-21-2141-7509 (J.P.S.)
| |
Collapse
|
9
|
Chiappim W, Testoni G, Miranda F, Fraga M, Furlan H, Saravia DA, Sobrinho ADS, Petraconi G, Maciel H, Pessoa R. Effect of Plasma-Enhanced Atomic Layer Deposition on Oxygen Overabundance and Its Influence on the Morphological, Optical, Structural, and Mechanical Properties of Al-Doped TiO 2 Coating. MICROMACHINES 2021; 12:mi12060588. [PMID: 34063804 PMCID: PMC8223979 DOI: 10.3390/mi12060588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022]
Abstract
The chemical, structural, morphological, and optical properties of Al-doped TiO2 thin films, called TiO2/Al2O3 nanolaminates, grown by plasma-enhanced atomic layer deposition (PEALD) on p-type Si <100> and commercial SLG glass were discussed. High-quality PEALD TiO2/Al2O3 nanolaminates were produced in the amorphous and crystalline phases. All crystalline nanolaminates have an overabundance of oxygen, while amorphous ones lack oxygen. The superabundance of oxygen on the crystalline film surface was illustrated by a schematic representation that described this phenomenon observed for PEALD TiO2/Al2O3 nanolaminates. The transition from crystalline to amorphous phase increased the surface hardness and the optical gap and decreased the refractive index. Therefore, the doping effect of TiO2 by the insertion of Al2O3 monolayers showed that it is possible to adjust different parameters of the thin-film material and to control, for example, the mobility of the hole-electron pair in the metal-insulator-devices semiconductors, corrosion protection, and optical properties, which are crucial for application in a wide range of technological areas, such as those used to manufacture fluorescence biosensors, photodetectors, and solar cells, among other devices.
Collapse
Affiliation(s)
- William Chiappim
- Laboratório de Plasmas e Processos, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes 50, São José dos Campos 12228-900, Brazil; (G.T.); (F.M.); (A.d.S.S.); (G.P.); (H.M.)
- i3N, Departamento de Física, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
- Correspondence: (W.C.); (M.F.); (R.P.); Tel.: +55-12-3947-5785 (R.P.)
| | - Giorgio Testoni
- Laboratório de Plasmas e Processos, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes 50, São José dos Campos 12228-900, Brazil; (G.T.); (F.M.); (A.d.S.S.); (G.P.); (H.M.)
| | - Felipe Miranda
- Laboratório de Plasmas e Processos, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes 50, São José dos Campos 12228-900, Brazil; (G.T.); (F.M.); (A.d.S.S.); (G.P.); (H.M.)
| | - Mariana Fraga
- Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, Rua Talim 330, São José dos Campos 12231-280, Brazil
- Correspondence: (W.C.); (M.F.); (R.P.); Tel.: +55-12-3947-5785 (R.P.)
| | - Humber Furlan
- Centro Estadual de Educação Tecnológica Paula Souza, Programa de Pós-Graduação em Gestão e Tecnologia em Sistemas Produtivos, São Paulo 01124-010, Brazil;
| | | | - Argemiro da Silva Sobrinho
- Laboratório de Plasmas e Processos, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes 50, São José dos Campos 12228-900, Brazil; (G.T.); (F.M.); (A.d.S.S.); (G.P.); (H.M.)
| | - Gilberto Petraconi
- Laboratório de Plasmas e Processos, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes 50, São José dos Campos 12228-900, Brazil; (G.T.); (F.M.); (A.d.S.S.); (G.P.); (H.M.)
| | - Homero Maciel
- Laboratório de Plasmas e Processos, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes 50, São José dos Campos 12228-900, Brazil; (G.T.); (F.M.); (A.d.S.S.); (G.P.); (H.M.)
- Instituto Científico e Tecnológico, Universidade Brasil, São Paulo 08230-030, Brazil
| | - Rodrigo Pessoa
- Laboratório de Plasmas e Processos, Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes 50, São José dos Campos 12228-900, Brazil; (G.T.); (F.M.); (A.d.S.S.); (G.P.); (H.M.)
- Correspondence: (W.C.); (M.F.); (R.P.); Tel.: +55-12-3947-5785 (R.P.)
| |
Collapse
|
10
|
Louloudakis D, Mouratis K, Gil-Rostra J, Koudoumas E, Alvarez R, Palmero A, Gonzalez-Elipe AR. Electrochromic response and porous structure of WO3 cathode layers. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Titanium Nitride Thin Film Based Low-Redox-Interference Potentiometric pH Sensing Electrodes. SENSORS 2020; 21:s21010042. [PMID: 33374837 PMCID: PMC7795294 DOI: 10.3390/s21010042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 02/05/2023]
Abstract
In this work, a solid-state potentiometric pH sensor is designed by incorporating a thin film of Radio Frequency Magnetron Sputtered (RFMS) Titanium Nitride (TiN) working electrode and a commercial Ag|AgCl|KCl double junction reference electrode. The sensor shows a linear pH slope of −59.1 mV/pH, R2 = 0.9997, a hysteresis as low as 1.2 mV, and drift below 3.9 mV/h. In addition, the redox interference performance of TiN electrodes is compared with that of Iridium Oxide (IrO2) counterparts. Experimental results show −32 mV potential shift (E0 value) in 1 mM ascorbic acid (reducing agent) for TiN electrodes, and this is significantly lower than the −114 mV potential shift of IrO2 electrodes with sub-Nernstian sensitivity. These results are most encouraging and pave the way towards the development of miniaturized, cost-effective, and robust pH sensors for difficult matrices, such as wine and fresh orange juice.
Collapse
|
12
|
Advanced RuO 2 Thin Films for pH Sensing Application. SENSORS 2020; 20:s20226432. [PMID: 33187131 PMCID: PMC7697712 DOI: 10.3390/s20226432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/24/2022]
Abstract
RuO2 thin films were prepared using magnetron sputtering under different deposition conditions, including direct current (DC) and radio frequency (RF) discharges, metallic/oxide cathodes, different substrate temperatures, pressures, and deposition times. The surface morphology, residual stress, composition, crystal structure, mechanical properties, and pH performances of these RuO2 thin films were investigated. The RuO2 thin films RF sputtered from a metallic cathode at 250 °C exhibited good pH sensitivity of 56.35 mV/pH. However, these films were rougher, less dense, and relatively softer. However, the DC sputtered RuO2 thin film prepared from an oxide cathode at 250 °C exhibited a pH sensitivity of 57.37 mV/pH with a smoother surface, denser microstructure and higher hardness. The thin film RF sputtered from the metallic cathode exhibited better pH response than those RF sputtered from the oxide cathode due to the higher percentage of the RuO3 phase present in this film.
Collapse
|
13
|
Liu Y, Liu H, Yao Z, Diao Y, Hu G, Zhang Q, Sun Y, Li Z. Fabrication, improved performance, and response mechanism of binary Ag–Sb alloy pH electrodes. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Manjakkal L, Dervin S, Dahiya R. Flexible potentiometric pH sensors for wearable systems. RSC Adv 2020; 10:8594-8617. [PMID: 35496561 PMCID: PMC9050124 DOI: 10.1039/d0ra00016g] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/30/2020] [Accepted: 02/15/2020] [Indexed: 12/21/2022] Open
Abstract
There is a growing demand for developing wearable sensors that can non-invasively detect the signs of chronic diseases early on to possibly enable self-health management. Among these the flexible and stretchable electrochemical pH sensors are particularly important as the pH levels influence most chemical and biological reactions in materials, life and environmental sciences. In this review, we discuss the most recent developments in wearable electrochemical potentiometric pH sensors, covering the key topics such as (i) suitability of potentiometric pH sensors in wearable systems; (ii) designs of flexible potentiometric pH sensors, which may vary with target applications; (iii) materials for various components of the sensor such as substrates, reference and sensitive electrode; (iv) applications of flexible potentiometric pH sensors, and (v) the challenges relating to flexible potentiometric pH sensors.
Collapse
Affiliation(s)
- Libu Manjakkal
- Bendable Electronics and Sensing Technologies (BEST) Group, School of Engineering, University of Glasgow G12 8QQ UK
| | - Saoirse Dervin
- Bendable Electronics and Sensing Technologies (BEST) Group, School of Engineering, University of Glasgow G12 8QQ UK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, School of Engineering, University of Glasgow G12 8QQ UK
| |
Collapse
|
15
|
Schultz J, Uddin Z, Singh G, Howlader MMR. Glutamate sensing in biofluids: recent advances and research challenges of electrochemical sensors. Analyst 2020; 145:321-347. [DOI: 10.1039/c9an01609k] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Electrochemical sensing guidelines for glutamate in biofluids, associated with different diseases, providing knowledge translation among science, engineering, and medical professionals.
Collapse
Affiliation(s)
- Jessica Schultz
- Department of Electrical and Computer Engineering
- McMaster University
- Hamilton
- Canada
| | - Zakir Uddin
- School of Rehabilitation Science
- McMaster University
- Hamilton
- Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine
- McMaster University
- Hamilton
- Canada
| | | |
Collapse
|
16
|
Application-Specific Oxide-Based and Metal-Dielectric Thin-Film Materials Prepared by Radio Frequency Magnetron Sputtering. MATERIALS 2019; 12:ma12203448. [PMID: 31640298 PMCID: PMC6829262 DOI: 10.3390/ma12203448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/04/2022]
Abstract
We report on the development of several different thin-film functional material systems prepared by radio frequency (RF) magnetron sputtering at Edith Cowan University nanofabrication labs. While focusing on the RF sputtering process optimizations for new or the previously underexplored material compositions and multilayer structures, we disclose several unforeseen material properties and behaviours. Among these are an unconventional magnetic hysteresis loop with an intermediate saturation state observed in garnet trilayers, and an ultrasensitive magnetic switching behaviour in garnet-oxide composites (GOC). We also report on the unusually high thermal exposure stability observed in some nanoengineered metal–dielectric multilayers. We communicate research results related to the design, prototyping, and practical fabrication of high-performance magneto-optic (MO) materials, oxide-based sensor components, and heat regulation coatings for advanced construction and solar windows.
Collapse
|
17
|
Sadig HR, Cheng L, Xiang TF. Synthesis of tetra-metal oxide system based pH sensor via branched cathodic electrodeposition on different substrates. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2018.10.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
18
|
Abstract
This paper presents the fabrication and implementation of novel resistive sensors that were implemented for strain-sensing applications. Some of the critical factors for the development of resistive sensors are addressed in this paper, such as the cost of fabrication, the steps of the fabrication process which make it time-consuming to complete each prototype, and the inability to achieve optimised electrical and mechanical characteristics. The sensors were fabricated via magnetron sputtering of thin-film chromium and gold layer on the thin-film substrates at defined thicknesses. Sticky copper tapes were attached on the two sides of the sensor patches to form the electrodes. The operating principle of the fabricated sensors was based on the change in their responses with respect to the corresponding changes in their relative resistance as a function of the applied strain. The strain-induced characteristics of the patches were studied with different kinds of experiments, such as consecutive bending and pressure application. The sensors with 400 nm thickness of gold layer obtained a sensitivity of 0.0086 Ω/ppm for the pressure ranging between 0 and 400 kPa. The gauge factor of these sensors was between 4.9–6.6 for temperatures ranging between 25 °C and 55 °C. They were also used for tactile sensing to determine their potential as thin-film sensors for industrial applications, like in robotic and pressure-mapping applications. The results were promising in regards to the sensors’ controllable film thickness, easy operation, purity of the films and mechanically sound nature. These sensors can provide a podium to enhance the usage of resistive sensors on a higher scale to develop thin-film sensors for industrial applications.
Collapse
|
19
|
Lonsdale W, Shylendra SP, Wajrak M, Alameh K. Application of all solid-state 3D printed pH sensor to beverage samples using matrix matched standard. Talanta 2019; 196:18-21. [DOI: 10.1016/j.talanta.2018.12.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 12/01/2022]
|
20
|
Kadavil H, Zagho M, Elzatahry A, Altahtamouni T. Sputtering of Electrospun Polymer-Based Nanofibers for Biomedical Applications: A Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E77. [PMID: 30626067 PMCID: PMC6359597 DOI: 10.3390/nano9010077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/08/2018] [Accepted: 11/13/2018] [Indexed: 12/22/2022]
Abstract
Electrospinning has gained wide attention recently in biomedical applications. Electrospun biocompatible scaffolds are well-known for biomedical applications such as drug delivery, wound dressing, and tissue engineering applications. In this review, the synthesis of polymer-based fiber composites using an electrospinning technique is discussed. Formerly, metal particles were then deposited on the surface of electrospun fibers using sputtering technology. Key nanometals for biomedical applications including silver and copper nanoparticles are discussed throughout this review. The formulated scaffolds were found to be suitable candidates for biomedical uses such as antibacterial coatings, surface modification for improving biocompatibility, and tissue engineering. This review briefly mentions the characteristics of the nanostructures while focusing on how nanostructures hold potential for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Hana Kadavil
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Moustafa Zagho
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Ahmed Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Talal Altahtamouni
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
21
|
Sadig HR, Cheng L, Xiang T. Using sol-gel supported by novel economic and environment-friendly spray-coating in the fabrication of nanostructure tri-system metal oxide-based pH sensor applications. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Perovskite Thin Film Synthesised from Sputtered Lead Sulphide. Sci Rep 2018; 8:1563. [PMID: 29367684 PMCID: PMC5784133 DOI: 10.1038/s41598-018-19746-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/05/2018] [Indexed: 11/12/2022] Open
Abstract
In the last few years, research on dye-sensitised devices has been focused on the development of solar cells, based on CH3NH3PbX3 (X = I−, Br−, Cl−) composites with perovskite structure. The deposition of perovskite thin films is usually carried out by solution-based processes using spin-coating techniques that result in the production of high quality films. Solar cells made by this method exceed 20% efficiency, with the potential for use in large scale production through ink print or screen printing techniques. As an alternative route, perovskite thin films can be deposited through thermal evaporation. A new method is proposed to produce CH3NH3PbI3, based on a radio-frequency (rf) -sputtering technique that results in a high reproducibility of the films and is compatible with roll-to-roll processes. We deposited thin films of lead-sulphide (PbS) and converted them into perovskite by placing the films in an iodine atmosphere, followed by dipping in a solution of methylammonium iodide (CH3NH3I). The conversions to PbI2 and CH3NH3PbI3 were confirmed by elemental analyses, absorption, and photoluminescence spectroscopy. Structural properties were revealed by X-ray diffraction and infrared and Raman spectroscopy.
Collapse
|
23
|
Lonsdale W, Wajrak M, Alameh K. Manufacture and application of RuO 2 solid-state metal-oxide pH sensor to common beverages. Talanta 2017; 180:277-281. [PMID: 29332811 DOI: 10.1016/j.talanta.2017.12.070] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 11/28/2022]
Abstract
A new reproducible solid-state metal-oxide pH sensor for beverage quality monitoring is developed and characterised. The working electrode of the developed pH sensor is based on the use of laser-etched sputter-deposited RuO2 on Al2O3 substrate, modified with thin layers of sputter-deposited Ta2O5 and drop-cast Nafion for minimisation of redox interference. The reference electrode is manufactured by further modifying a working electrode with a porous polyvinyl butyral layer loaded with fumed SiO2. The developed pH sensor shows excellent performance when applied to a selection of beverage samples, with a measured accuracy within 0.08 pH of a commercial glass pH sensor.
Collapse
Affiliation(s)
- W Lonsdale
- Electron Science Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia.
| | - M Wajrak
- School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - K Alameh
- Electron Science Research Institute, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
24
|
Kovaleva EA, Kuzubov AA, Vikulova ES, Basova TV, Morozova NB. Mechanism of dicarbonyl(2,4-pentanedionato)iridium(I) decomposition on iron surface and in gas phase: Complex experimental and theoretical study. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
RuO₂ pH Sensor with Super-Glue-Inspired Reference Electrode. SENSORS 2017; 17:s17092036. [PMID: 28878182 PMCID: PMC5621388 DOI: 10.3390/s17092036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 11/16/2022]
Abstract
A pH-sensitive RuO2 electrode coated in a commercial cyanoacrylate adhesive typically exhibits very low pH sensitivity, and could be paired with a RuO2 working electrode as a differential type pH sensor. However, such sensors display poor performance in real sample matrices. A pH sensor employing a RuO2 pH-sensitive working electrode and a SiO2-PVB junction-modified RuO2 reference electrode is developed as an alternative high-performance solution. This sensor exhibits a performance similar to that of a commercial glass pH sensor in some common sample matrices, particularly, an excellent pH sensitivity of 55.7 mV/pH, a hysteresis as low as 2.7 mV, and a drift below 2.2 mV/h. The developed sensor structure opens the way towards the development of a simple, cost effective, and robust pH sensor for pH analysis in various sample matrices.
Collapse
|
26
|
Pfeifer KB, Achyuthan KE, Allen M, Denton MLB, Siegal MP, Manginell RP. Microfabrication of a gadolinium-derived solid-state sensor for thermal neutrons. JOURNAL OF RADIATION RESEARCH 2017; 58:464-473. [PMID: 28369631 PMCID: PMC5570059 DOI: 10.1093/jrr/rrx010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/18/2016] [Indexed: 05/19/2023]
Abstract
Neutron sensing is critical in civilian and military applications. Conventional neutron sensors are limited by size, weight, cost, portability and helium supply. Here the microfabrication of gadolinium (Gd) conversion material-based heterojunction diodes for detecting thermal neutrons using electrical signals produced by internal conversion electrons (ICEs) is described. Films with negligible stress were produced at the tensile-compressive crossover point, enabling Gd coatings of any desired thickness by controlling the radiofrequency sputtering power and using the zero-point near p(Ar) of 50 mTorr at 100 W. Post-deposition Gd oxidation-induced spallation was eliminated by growing a residual stress-free 50 nm neodymium-doped aluminum cap layer atop Gd. The resultant coatings were stable for at least 6 years, demonstrating excellent stability and product shelf-life. Depositing Gd directly on the diode surface eliminated the air gap, leading to a 200-fold increase in electron capture efficiency and facilitating monolithic microfabrication. The conversion electron spectrum was dominated by ICEs with energies of 72, 132 and 174 keV. Results are reported for neutron reflection and moderation by polyethylene for enhanced sensitivity, and γ- and X-ray elimination for improved specificity. The optimal Gd thickness was 10.4 μm for a 300 μm-thick partially depleted diode of 300 mm2 active surface area. Fast detection (within 10 min) at a neutron source-to-diode distance of 11.7 cm was achieved with this configuration. All ICE energies along with γ-ray and Kα,β X-rays were modeled to emphasize correlations between experiment and theory. Semi-conductor thermal neutron detectors offer advantages for field-sensing of radioactive neutron sources.
Collapse
Affiliation(s)
- Kent B. Pfeifer
- Nano and Micro Sensors Department, PO Box 5800, Mail Stop 1425, Sandia National Laboratories, 1515 Eubank Blvd, Albuquerque, NM 87185, USA
- Corresponding author. Nano and Micro Sensors Department, PO Box 5800, Mail Stop 1425, Sandia National Laboratories, 1515 Eubank Blvd, Albuquerque, NM 87185–1425, USA. Tel: +1-505-844-8105; Fax: +1-505-844-1198;
| | - Komandoor E. Achyuthan
- Nano and Micro Sensors Department, PO Box 5800, Mail Stop 1425, Sandia National Laboratories, 1515 Eubank Blvd, Albuquerque, NM 87185, USA
| | - Matthew Allen
- Technical Analysis Department, Sandia National Laboratories, 1515 Eubank Blvd, Albuquerque, NM 87185, USA
| | - Michele L. B. Denton
- AUR Systems Engineering Department, Sandia National Laboratories, 1515 Eubank Blvd, Albuquerque, NM 87185, USA
| | - Michael P. Siegal
- Nanoscale Sciences Department, Sandia National Laboratories, 1515 Eubank Blvd, Albuquerque, NM 87185, USA
| | - Ronald P. Manginell
- Nano and Micro Sensors Department, PO Box 5800, Mail Stop 1425, Sandia National Laboratories, 1515 Eubank Blvd, Albuquerque, NM 87185, USA
| |
Collapse
|
27
|
Hashimoto T, Miwa M, Nasu H, Ishihara A, Nishio Y. pH Sensors Using 3d-Block Metal Oxide-Coated Stainless Steel Electrodes. Electrochim Acta 2016. [DOI: 10.1016/j.electacta.2016.10.166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Effect of ordered mesoporous carbon contact layer on the sensing performance of sputtered RuO 2 thin film pH sensor. Talanta 2016; 164:52-56. [PMID: 28107967 DOI: 10.1016/j.talanta.2016.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/09/2016] [Accepted: 11/10/2016] [Indexed: 11/20/2022]
Abstract
The effect of contact layer on the pH sensing performance of a sputtered RuO2 thin film pH sensor is investigated. The response of pH sensors employing RuO2 thin film electrodes on screen-printed Pt, carbon and ordered mesoporous carbon (OMC) contact layers are measured over a pH range from 4 to 10. Working electrodes with OMC contact layer are found to have Nernstian pH sensitivity (-58.4mV/pH), low short-term drift rate (5.0mV/h), low hysteresis values (1.13mV) and fast reaction times (30s), after only 1h of conditioning. A pH sensor constructed with OMC carbon contact layer displays improved sensing performance compared to Pt and carbon-based counterparts, making this electrode more attractive for applications requiring highly-accurate pH sensing with reduced conditioning time.
Collapse
|
29
|
The pH Sensing Properties of RF Sputtered RuO2 Thin-Film Prepared Using Different Ar/O2 Flow Ratio. MATERIALS 2015. [PMCID: PMC5455725 DOI: 10.3390/ma8063352] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The influence of the Ar/O2 gas ratio during radio frequency (RF) sputtering of the RuO2 sensing electrode on the pH sensing performance is investigated. The developed pH sensor consists in an RF sputtered ruthenium oxide thin-film sensing electrode, in conjunction with an electroplated Ag/AgCl reference electrode. The performance and characterization of the developed pH sensors in terms of sensitivity, response time, stability, reversibility, and hysteresis are investigated. Experimental results show that the pH sensor exhibits super-Nernstian slopes in the range of 64.33–73.83 mV/pH for Ar/O2 gas ratio between 10/0–7/3. In particular, the best pH sensing performance, in terms of sensitivity, response time, reversibility and hysteresis, is achieved when the Ar/O2 gas ratio is 8/2, at which a high sensitivity, a low hysteresis and a short response time are attained simultaneously.
Collapse
|