1
|
Compositional and Morphological Comparison among Three Coeval Violins Made by Giuseppe Guarneri “del Gesù” in 1734. COATINGS 2021. [DOI: 10.3390/coatings11080884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present work, we had the opportunity to study the coating systems of three different coeval violins, namely “Spagnoletti”, “Stauffer”, and “Principe Doria”, made by Giuseppe Guarneri “del Gesù” in 1734. These three violins were non-invasively investigated by reflection Fourier transform infrared spectroscopy and X-ray fluorescence. These two techniques were combined for the first time with a 3D laser scanner. The analytical campaign enabled the characterization of the materials and their distribution within the stratigraphy, mainly composed of varnish and, when present, of a proteinaceous ground coat. Some restoration materials were also identified, suggesting the application of different maintenance treatments undertaken during their history. The preliminary information about morphological and geometrical differences between the three coeval violins were acquired through the 3D laser scanner in order to observe similarities and differences in the design features among the three violins.
Collapse
|
2
|
Fiocco G, Invernizzi C, Grassi S, Davit P, Albano M, Rovetta T, Stani C, Vaccari L, Malagodi M, Licchelli M, Gulmini M. Reflection FTIR spectroscopy for the study of historical bowed string instruments: Invasive and non-invasive approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 245:118926. [PMID: 32956933 DOI: 10.1016/j.saa.2020.118926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
A micro-sample detached from a historical bowed string instrument represents a valuable record of the materials used by the great Masters of violin-making art. It allows researchers to collect a wealth of information and to disclose - at least partially - their procedures for finishing and varnishing. In the present work, a set of four cross-sectioned micro-samples - collected from well-preserved bowed string instruments made by Antonio Stradivari and Lorenzo Storioni - are investigated by Synchrotron Radiation (SR) FTIR micro-spectroscopy in reflection mode. SR-FTIR spectra are discussed both as point analysis and as univariate and multivariate chemical maps. The same cross-sections are also investigated by optical microscopy under UV light and SEM-EDX. Moreover, data obtained directly from the musical instruments by a non-invasive approach employing a portable reflection FTIR spectrometer are also considered. FTIR investigation of the cross-sections is a challenging task for such brittle and complex layered micro-samples. Nevertheless, the high intensity of the analytical SR beam used in reflection geometry allowed us to obtain informative FTIR spectra and to fully preserve the integrity of the samples. Both the non-invasive and the micro-invasive reflection FTIR approaches can reveal the materials spread on the wood surface to finish the musical instruments. The fingerprint of Lorenzo Storioni's production around 1790 emerged from the study of the cross-sectioned samples, definitely different from the technique of Stradivari.
Collapse
Affiliation(s)
- Giacomo Fiocco
- Laboratorio Arvedi di Diagnostica Non Invasiva, CISRiC, Università degli Studi di Pavia, Via Bell'Aspa 3, 26100 Cremona, Italy; Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, 10125 Torino, Italy.
| | - Claudia Invernizzi
- Laboratorio Arvedi di Diagnostica Non Invasiva, CISRiC, Università degli Studi di Pavia, Via Bell'Aspa 3, 26100 Cremona, Italy; Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze, 7/A, 43124 Parma, Italy.
| | - Silvia Grassi
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Via Celoria, 2, 20133 Milano, Italy.
| | - Patrizia Davit
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, 10125 Torino, Italy.
| | - Michela Albano
- Laboratorio Arvedi di Diagnostica Non Invasiva, CISRiC, Università degli Studi di Pavia, Via Bell'Aspa 3, 26100 Cremona, Italy; Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy.
| | - Tommaso Rovetta
- Laboratorio Arvedi di Diagnostica Non Invasiva, CISRiC, Università degli Studi di Pavia, Via Bell'Aspa 3, 26100 Cremona, Italy.
| | - Chiaramaria Stani
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5, 34194 Basovizza, Trieste, Italy.
| | - Lisa Vaccari
- Elettra-Sincrotrone Trieste S.C.p.A., S.S. 14 km 163.5, 34194 Basovizza, Trieste, Italy.
| | - Marco Malagodi
- Laboratorio Arvedi di Diagnostica Non Invasiva, CISRiC, Università degli Studi di Pavia, Via Bell'Aspa 3, 26100 Cremona, Italy; Dipartimento di Musicologia e Beni Culturali, Università degli Studi di Pavia, Corso Garibaldi 178, 26100 Cremona, Italy.
| | - Maurizio Licchelli
- Laboratorio Arvedi di Diagnostica Non Invasiva, CISRiC, Università degli Studi di Pavia, Via Bell'Aspa 3, 26100 Cremona, Italy.
| | - Monica Gulmini
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria 7, 10125 Torino, Italy.
| |
Collapse
|
3
|
Surface and Interface Treatments on Wooden Artefacts: Potentialities and Limits of a Non-Invasive Multi-Technique Study. COATINGS 2020. [DOI: 10.3390/coatings11010029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Wooden artefacts embrace wide-ranging types of objects, like paintings on panel, sculptures, musical instruments, and furniture. Generally, in the manufacturing process of an artwork, wood is firstly treated with organic and inorganic materials to make it nonporous and morphologically homogeneous, and, at last, the surface treatment consists of varnishes or coatings applied with the aims of conferring aesthetic properties and protecting wood from biological growth and external degradation agents, as well as mechanical damage. In this work, different wooden mock-ups were prepared by varying some parameters: concentration of filler and pigment, respectively, in the ground and paint layers, thickness of the protective varnish coat, and sequence of the layers. The mock-ups were subsequently exposed to time-varying artificial aging processes. The multi-analytical non-invasive approach involved spectroscopic (reflection FT-IR, Raman, and X-ray fluorescence), tomographic (optical coherence tomography) and colorimetric techniques. Data were interpreted using both univariate and multivariate methods. The aim was to evaluate potential and limits of each non-invasive technique into the study of different stratigraphies of wooden artworks. This approach was supported by microscopic observations of cross-sections obtained from selected mock-ups. The methodological approach proposed here would add valuable technical know-how and information about the non-invasive techniques applied to the study of wooden artworks.
Collapse
|
4
|
Fidalgo G, Paiva K, Mendes G, Barcellos R, Colaço G, Sena G, Pickler A, Mota CL, Tromba G, Nogueira LP, Braz D, Silva HR, Colaço MV, Barroso RC. Synchrotron microtomography applied to the volumetric analysis of internal structures of Thoropa miliaris tadpoles. Sci Rep 2020; 10:18934. [PMID: 33144603 PMCID: PMC7641268 DOI: 10.1038/s41598-020-75993-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Amphibians are models for studying applied ecological issues such as habitat loss, pollution, disease, and global climate change due to their sensitivity and vulnerability to changes in the environment. Developmental series of amphibians are informative about their biology, and X-ray based 3D reconstruction holds promise for quantifying morphological changes during growth—some with a direct impact on the possibility of an experimental investigation on several of the ecological topics listed above. However, 3D resolution and discrimination of their soft tissues have been difficult with traditional X-ray computed tomography, without time-consuming contrast staining. Tomographic data were initially performed (pre-processing and reconstruction) using the open-source software tool SYRMEP Tomo Project. Data processing and analysis of the reconstructed tomography volumes were conducted using the segmentation semi-automatic settings of the software Avizo Fire 8, which provide information about each investigated tissues, organs or bone elements. Hence, volumetric analyses were carried out to quantify the development of structures in different tadpole developmental stages. Our work shows that synchrotron X-ray microtomography using phase-contrast mode resolves the edges of the internal tissues (as well as overall tadpole morphology), facilitating the segmentation of the investigated tissues. Reconstruction algorithms and segmentation software played an important role in the qualitative and quantitative analysis of each target structure of the Thoropa miliaris tadpole at different stages of development, providing information on volume, shape and length. The use of the synchrotron X-ray microtomography setup of the SYRMEP beamline of Elettra Synchrotron, in phase-contrast mode, allows access to volumetric data for bone formation, eye development, nervous system and notochordal changes during the development (ontogeny) of tadpoles of a cycloramphid frog Thoropa miliaris. As key elements in the normal development of these and any other frog tadpole, the application of such a comparative ontogenetic study, may hold interest to researchers in experimental and environmental disciplines.
Collapse
Affiliation(s)
- G Fidalgo
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - K Paiva
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - G Mendes
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R Barcellos
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - G Colaço
- Laboratory of Herpetology, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - G Sena
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - A Pickler
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - C L Mota
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - G Tromba
- Elettra/Sincrotrone Trieste S.C.P.a., Trieste, Italy
| | - L P Nogueira
- Oral Research Laboratory, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - D Braz
- Nuclear Engineering Program/COPPE, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - H R Silva
- Laboratory of Herpetology, Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - M V Colaço
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - R C Barroso
- Laboratory of Applied Physics to Biomedical Science, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Blümich B, Baias M, Rehorn C, Gabrielli V, Jaschtschuk D, Harrison C, Invernizzi C, Malagodi M. Comparison of historical violins by non-destructive MRI depth profiling. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105219] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
6
|
Invernizzi C, Fiocco G, Iwanicka M, Kowalska M, Targowski P, Blümich B, Rehorn C, Gabrielli V, Bersani D, Licchelli M, Malagodi M. Non-invasive mobile technology to study the stratigraphy of ancient Cremonese violins: OCT, NMR-MOUSE, XRF and reflection FT-IR spectroscopy. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104754] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
The influence of multi-layered varnishes on moisture protection and vibrational properties of violin wood. Sci Rep 2019; 9:18611. [PMID: 31819087 PMCID: PMC6901594 DOI: 10.1038/s41598-019-54991-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/20/2019] [Indexed: 11/21/2022] Open
Abstract
Violin varnishes are known to affect both moisture absorption and vibrational properties of violin wood. However, traditional multi-layered varnish systems suffer from substantial wear as a result of intensive use, which calls for deeper understanding of the specific impact of individual layers. Using sophisticated in-situ neutron imaging and vibrational modal analysis, we show how wood sorption and vibrational behavior of tonewood depend on the build-up of the varnish system. The results demonstrate the protective effect of complete coatings and emphasize that strongly worn regions cannot accomplish the function as an effective moisture barrier, which might pose a risk for frequently played or aged string instruments. Furthermore, the build-up of the varnish system affects the vibrational properties of the tonewood, influencing its final sound quality. This delicate interplay should be considered both for the handling of antique and aged violins and for the production of modern high-quality instruments.
Collapse
|