1
|
Tian W, Li C, Liu K, Ma F, Chu K, Tang X, Wang Z, Yue S, Qu S. Fabrication of Transferable and Micro/Nanostructured Superhydrophobic Surfaces Using Demolding and iCVD Processes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2368-2375. [PMID: 36574499 DOI: 10.1021/acsami.2c17613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Superhydrophobic surfaces possess enormous potential in various applications on account of their versatile functionalities. However, artificial superhydrophobic surfaces with ultralow solid/liquid adhesion often require complicated structure fabrication and surface fluorination processes. Here, we designed a superhydrophobic surface possessed of micro/nanoscale structures by employing facile and low-cost demolding and initiated chemical vapor deposition (iCVD) processes. The achieved micro/nanostructured superhydrophobic surface has a maximum static contact angle of ∼170°, a roll-off angle and contact angle hysteresis below 1°, ultralow solid/liquid adhesion for water droplets, and maintains excellent superhydrophobicity after exposure to strongly corrosive species, like strong acid/base and salt solutions, for 60 h. This reasonability-designed method of creating the superhydrophobic surface could provide valuable guidelines for the manufacture of transferable superhydrophobic surfaces and facilitate potential applications extending from optoelectronic devices to self-cleaning materials, such as solar cells, windows, and electronic displays.
Collapse
Affiliation(s)
- Wang Tian
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Li
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kong Liu
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangyuan Ma
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Science, China University of Geosciences, Beijing 100083, China
| | - Kaiwen Chu
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Tang
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijie Wang
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhong Yue
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengchun Qu
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Unger K, Coclite AM. Glucose-Responsive Boronic Acid Hydrogel Thin Films Obtained via Initiated Chemical Vapor Deposition. Biomacromolecules 2022; 23:4289-4295. [PMID: 36053563 PMCID: PMC9554909 DOI: 10.1021/acs.biomac.2c00762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Glucose-responsive materials are of great importance
in the field
of monitoring the physiological glucose level or smart insulin management.
This study presents the first vacuum-based deposition of a glucose-responsive
hydrogel thin film. The successful vacuum-based synthesis of a glucose-responsive
hydrogel may open the door to a vast variety of new applications,
where, for example, the hydrogel thin film is applied on new possible
substrates. In addition, vacuum-deposited films are free of leachables
(e.g., plasticizers and residual solvents). Therefore, they are, in
principle, safe for in-body applications. A hydrogel made of but-3-enylboronic
acid units, a boronic acid compound, was synthesized via initiated
chemical vapor deposition. The thin film was characterized in terms
of chemical composition, surface morphology, and swelling response
toward pH and sucrose, a glucose–fructose compound. The film
was stable in aqueous solutions, consisting of polymerized boronic
acid and the initiator unit, and had an undulating texture appearance
(rms 2.1 nm). The hydrogel was in its shrunken state at pH 4–7
and swelled by increasing the pH to 9. The pKa was 8.2 ± 0.2. The response to glucose was observed
at pH 10 and resulted in thickness shrinking.
Collapse
Affiliation(s)
- Katrin Unger
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, 8010 Graz, Austria
| | - Anna Maria Coclite
- Institute of Solid State Physics, NAWI Graz, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
5
|
Unger K, Coclite AM. Conformal Coating of Powder by Initiated Chemical Vapor Deposition on Vibrating Substrate. Pharmaceutics 2020; 12:E904. [PMID: 32972030 PMCID: PMC7558006 DOI: 10.3390/pharmaceutics12090904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/02/2020] [Accepted: 09/18/2020] [Indexed: 12/05/2022] Open
Abstract
Encapsulation of pharmaceutical powders within thin functional polymer films is a powerful and versatile method to modify drug release properties. Conformal coating over the complete surface of the particle via chemical vapor deposition techniques is a challenging task due to the compromised gas-solid contact. In this study, an initiated chemical vapor deposition reactor was adapted with speakers and vibration of particles was achieved by playing AC/DC's song "Thunderstruck" to overcome the above-mentioned problem. To show the possibilities of this method, two types of powder of very different particle sizes were chosen, magnesium citrate (3-10 µm, cohesive powder) and aspirin (100-500 µm, good flowability), and coated with poly-ethylene-glycol-di-methacrylate. The release curve of coated magnesium citrate powder was retarded compared to uncoated powder. However, neither changing the thickness coating nor vibrating the powder during the deposition had influence on the release parameters, indicating, that cohesive powders cannot be coated conformally. The release of coated aspirin was as well retarded as compared to uncoated aspirin, especially in the case of the powder that vibrated during deposition. We attribute the enhancement of the retarded release to the formation of a conformal coating on the aspirin powder.
Collapse
Affiliation(s)
| | - Anna Maria Coclite
- Institute of Solid State Physics, Graz University of Technology, 8010 Graz, Austria;
| |
Collapse
|