1
|
Gracher-Teixeira L, Pituco SCS, Colucci G, Santamaria-Echart A, Peres AM, Dias MM, Barreiro MF. Developing High-Coloring Natural Systems Using Double Emulsions with Daucus carota L. Extract to Meet High-Performance Requirements. Foods 2024; 13:4147. [PMID: 39767091 PMCID: PMC11675280 DOI: 10.3390/foods13244147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Daucus carota L. extract is attracting interest as a natural colorant alternative. However, the presence of anthocyanins (ACNs), which are sensitive to pH changes, limits its application. To tackle this issue, water-in-oil-in-water (W1/O/W2) double emulsions are emerging as innovative solutions. Nevertheless, the problem of reaching robust colorant systems for industrial use still needs to be overcome. One important target is to reach a high coloring power, minimizing its impact on the final product. In this context, the effect of colorant concentration and the volume of the primary emulsion, two routes to increase the colorant power, on color attributes and stability, an important feature to reach a marketable product, was studied. The optimal experimental design was conducted to two optimal solutions, whether through heightened colorant concentration or primary emulsion volume: a 41/59 (W1/O)/W2 ratio with 11 wt.% colorant, and a 48/52 (W1/O)/W2 ratio with 6 wt.% colorant, respectively. A subsequent assessment of color and physical emulsion stability over 30 days pointed out the solution with the lower colorant concentration (6 wt.%) as the one with better performance (L*: 44.11 ± 0.03, a*: 25.79 ± 0.01, D4;3: 9.62 ± 0.1 µm, and CI: 14.55 ± 0.99%), also minimizing the permeability of the colorant to the outer aqueous phase. Overall, these optimized emulsions offer versatile coloring solutions suitable for various industrial applications, such as food matrices and functional cosmetics.
Collapse
Affiliation(s)
- Liandra Gracher-Teixeira
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.G.-T.); (S.C.S.P.); (G.C.); (A.S.-E.); (A.M.P.)
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Samara C. Silva Pituco
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.G.-T.); (S.C.S.P.); (G.C.); (A.S.-E.); (A.M.P.)
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Giovana Colucci
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.G.-T.); (S.C.S.P.); (G.C.); (A.S.-E.); (A.M.P.)
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Arantzazu Santamaria-Echart
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.G.-T.); (S.C.S.P.); (G.C.); (A.S.-E.); (A.M.P.)
| | - António M. Peres
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.G.-T.); (S.C.S.P.); (G.C.); (A.S.-E.); (A.M.P.)
| | - Madalena M. Dias
- LSRE-LCM—Laboratory of Separation and Reaction Engineering—Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - M. Filomena Barreiro
- CIMO, LA SusTEC, Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (L.G.-T.); (S.C.S.P.); (G.C.); (A.S.-E.); (A.M.P.)
| |
Collapse
|
2
|
Zhang L, Hu Y, Jiang L. Advancements in emulsion systems for specialized infant formulas: Research process and formulation proposals for optimizing bioavailability of nutraceuticals. Compr Rev Food Sci Food Saf 2024; 23:e70043. [PMID: 39455164 DOI: 10.1111/1541-4337.70043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/13/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
With the rapid advancements in nutrition and dietary management, infant formulas for special medical purposes (IFSMPs) have been developed to cater to the unique nutraceutical requirements of infants with specific medical conditions or physiological features. However, there are various challenges in effectively preserving and maximizing the health benefits of the specific nutraceuticals incorporated in IFSMPs. This review provides an overview of the nutritional compositions of various IFSMPs and highlights the challenges associated with the effective supplementation of specific nutraceuticals for infants. In addition, it emphasizes the promising potential of emulsion delivery systems, which possess both encapsulation and delivery features, to significantly improve the solubility, stability, oral acceptance, and bioavailability (BA) of nutraceutical bioactives. Based on this information, this work proposes detailed strategies for designing and developing model IFSMP emulsions to enhance the BA of specially required nutraceuticals. Key areas covered include emulsion stabilization, selective release mechanisms, and effective absorption of nutraceuticals. By following these proposals, researchers and industry professionals can design and optimize emulsion-based IFSMPs with enhanced health benefits. This review not only outlines the developmental states of IFSMP formulations but also identifies future research directions aimed at improving the physiological health benefits of IFSMPs. This effort lays the theoretical groundwork for the further development of emulsion-type IFSMP in infant formula (IF) industry, positioning the IF industry to better meet the complex needs of infants requiring specialized nutrition.
Collapse
Affiliation(s)
- Liling Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, China
| | - Yang Hu
- Department of Scientific and Technological Innovation, Future Food (Bai Ma) Research Institute, Nanjing, Jiangsu, China
- Division of Microbiology, Brewing and Biotechnology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Opustilová K, Lapčíková B, Kocourková K, Lapčík L. The Composition Optimization of Curcumin-Loaded Double Oil-Water-Oil Emulsions and Their Stability Evaluation. Molecules 2024; 29:4035. [PMID: 39274882 PMCID: PMC11396728 DOI: 10.3390/molecules29174035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
This study aimed to optimize the preparation of multiple oil-water-oil (O/W/O) emulsions using varying amounts of Tween 20 emulsifier, different homogenization methods, and optimal preparation temperatures as carriers for encapsulated curcumin. Following the optimization process, the optimal preparation temperature was found to be 25 °C, with a homogenization speed of 10,000 RPM and an emulsifier concentration of 0.5% Tween 20. Subsequently, the effects of physicochemical and viscoelastic properties on the different types of oils used in the outer phase, as well as the impact of storage time, were monitored. The novelty of this work lies in its comprehensive analysis of the stability and encapsulation efficiency of multiple emulsions using various oils, an area that has not been extensively explored before. After identifying the optimal preparation procedure, all samples with different edible oils demonstrated excellent stability and encapsulation efficiency, showing minimal variation in results. The most stable multiple emulsion was found to be the one with coconut oil in the outer phase, exhibiting half the particle size compared to other samples and the lowest encapsulation efficiency losses over 50 days of storage. This study provides new insights into the formulation of stable multiple emulsions for the effective delivery of curcumin and similar bioactive compounds.
Collapse
Affiliation(s)
- Kristýna Opustilová
- Faculty of Technology, Department of Food Technology, Tomas Bata University in Zlin, Nam. T. G. Masaryka 5555, 760 01 Zlin, Czech Republic
| | - Barbora Lapčíková
- Faculty of Technology, Department of Food Technology, Tomas Bata University in Zlin, Nam. T. G. Masaryka 5555, 760 01 Zlin, Czech Republic
| | - Karolina Kocourková
- Faculty of Technology, Department of Food Technology, Tomas Bata University in Zlin, Nam. T. G. Masaryka 5555, 760 01 Zlin, Czech Republic
| | - Lubomír Lapčík
- Faculty of Technology, Department of Food Technology, Tomas Bata University in Zlin, Nam. T. G. Masaryka 5555, 760 01 Zlin, Czech Republic
| |
Collapse
|
4
|
Zhi Z, Li H, Geurs I, Lewille B, Liu R, Van der Meeren P, Dewettinck K, van Bockstaele F. Destabilization of a model O/W/O double emulsion: From bulk to interface. Food Chem 2024; 445:138723. [PMID: 38350201 DOI: 10.1016/j.foodchem.2024.138723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
Oil-in-water-in-oil (O/W/O) double emulsions are considered an advanced oil-structuring technology that can accomplish multi-functions to improve food quality and nutrition. However, this special structure is thermodynamically unstable. This study formulated a model O/W/O double emulsion with standard surfactants, Tween 80 (4 %) and polyglycerol polyricinoleate (PGPR, 5 %), using a traditional two-step method with different homogenization parameters. Cryo-SEM and GC-FID results show that O/W/O emulsions were successfully formulated, and the release rate (RR) of medium-chain triglycerides (MCT) oil from the inner oil to the outer oil phase increased significantly with 2nd homogenization speed increasing, respectively. Interestingly, the RR of all samples reached about 75 % after 2 months of storage, suggesting that O/W/O emulsions were highly unstable. To explain the observed instability, dynamic interfacial tension and interfacial rheology were performed using a drop shape tensiometer. Results demonstrated that unadsorbed Tween 80 in the intermediate aqueous phase was a key factor in markedly decreasing the interfacial properties of the outer PGPR-assembled film by affecting the interfacial rearrangement. Additionally, it was found that the MCT release showed a positive correlation with the Tween 80 concentration, demonstrating that the formed Tween 80 micelles could transport oil molecules to strengthen the emulsion instability. Taken together, this study reveals the destabilization mechanism of model O/W/O surfactants-stabilized emulsions from bulk to interface, providing highly relevant insights for the design of stable O/W/O double emulsions.
Collapse
Affiliation(s)
- Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| | - Hao Li
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Indi Geurs
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Benny Lewille
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Paul Van der Meeren
- Particle and Interfacial Technology Group (PaInT), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Koen Dewettinck
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Filip van Bockstaele
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium.
| |
Collapse
|
5
|
Fan W, Shi Y, Hu Y, Zhang J, Liu W. Effects of the Combination of Protein in the Internal Aqueous Phase and Polyglycerol Polyricinoleate on the Stability of Water-In-Oil-In-Water Emulsions Co-Encapsulating Crocin and Quercetin. Foods 2023; 13:131. [PMID: 38201158 PMCID: PMC10779032 DOI: 10.3390/foods13010131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/19/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
This study aimed to diminish the reliance on water-in-oil-in-water (W/O/W) emulsions on the synthetic emulsifier polyglycerol polyricinoleate (PGPR). Considering the potential synergistic effects of proteins and PGPR, various protein types (whey, pea and chickpea protein isolates) were incorporated into the internal aqueous phase to formulate W/O/W emulsions. The effects of the combination of PGPR and protein at different ratios (5:0, 4:1, 3:2, 1:1 and 2:3) on the stability and encapsulation properties of W/O/W emulsions co-encapsulating crocin and quercetin were investigated. The findings indicated that the combination of PGPR and protein resulted in a slight reduction in the encapsulation efficiency of the emulsions, compared to that of PGPR (the control). Nonetheless, this combination significantly enhanced the physical stability of the emulsions. This result was primarily attributed to the smaller droplet sizes and elevated viscosity. These factors contributed to increased retentions of crocin (exceeding 70.04%) and quercetin (exceeding 80.29%) within the emulsions after 28 days of storage, as well as their improved bioavailability (increases of approximately 11.62~20.53% and 3.58~7.98%, respectively) during gastrointestinal digestion. Overall, combining PGPR and protein represented a viable and promising strategy for reducing the amount of PGPR and enhancing the stability of W/O/W emulsions. Notably, two plant proteins exhibited remarkable favorability in this regard. This work enriched the formulations of W/O/W emulsions and their application in the encapsulation of bioactive substances.
Collapse
Affiliation(s)
- Wei Fan
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (W.F.); (Y.H.); (J.Z.); (W.L.)
| | - Yan Shi
- Department of Food Science and Engineering, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Yueming Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (W.F.); (Y.H.); (J.Z.); (W.L.)
| | - Jing Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (W.F.); (Y.H.); (J.Z.); (W.L.)
| | - Wei Liu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; (W.F.); (Y.H.); (J.Z.); (W.L.)
| |
Collapse
|
6
|
Douliez JP. Double Emulsion Droplets as a Plausible Step to Fatty Acid Protocells. SMALL METHODS 2023; 7:e2300530. [PMID: 37574259 DOI: 10.1002/smtd.202300530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/07/2023] [Indexed: 08/15/2023]
Abstract
It is assumed that life originated on the Earth from vesicles made of fatty acids. These amphiphiles are the simplest chemicals, which can be present in the prebiotic soup, capable of self-assembling into compartments mimicking modern cells. Production of fatty acid vesicles is widely studied, as their growing and division. However, how prebiotic chemicals require to further yield living cells encapsulated within protocells remains unclear. Here, one suggests a scenario based on recent studies, which shows that phospholipid vesicles can form from double emulsions affording facile encapsulation of cargos. In these works, water-in-oil-in-water droplets are produced by microfluidics, having dispersed lipids in the oil. Dewetting of the oil droplet leaves the internal aqueous droplet covered by a lipid bilayer, entrapping cargos. In this review, formation of fatty acid protocells is briefly reviewed, together with the procedure for preparing double emulsions and vesicles from double emulsion and finally, it is proposed that double emulsion droplets formed in the deep ocean where undersea volcano expulsed materials, with fatty acids (under their carboxylic form) and alkanols as the oily phase, entrapping hydrosoluble prebiotic chemicals in a double emulsion droplet core. Once formed, double emulsion droplets can move up to the surface, where an increase of pH, variation of pressure and/or temperature may have allowed dewetting of the oily droplet, leaving a fatty acid vesicular protocell with encapsulated prebiotic materials.
Collapse
Affiliation(s)
- Jean-Paul Douliez
- Biologie du Fruit et Pathologie, UMR 1332, Institut National de Recherche Agronomique (INRAE), Université De Bordeaux, Villenave d'Ornon, F-33140, France
| |
Collapse
|
7
|
Li D, Hu M, Hou L, Gao Y, Tian Z, Wen W, Fan B, Li S, Wang F. The structural and functional properties of soybean protein-polyglutamic acid complex effected the stability of W/O/W emulsion encapsulated Nattokinase. Food Chem 2023; 414:135724. [PMID: 36821916 DOI: 10.1016/j.foodchem.2023.135724] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Nattokinase (NK) derived from food is a sustainable thrombolytic agent. In this study, to protect vulnerable biological activity of NK, the targeted modified W/O/W emulsions were fabricated from complexes of soybean isolate protein (SPI) and polyglutamic acid (PGA). The results showed that the SPI-PGA complex formed a tighter internal structure through non-covalent bonds. The secondary structure, α-helix and β-sheet content of the 1:3 (v/v) ratio complex of SPI to PGA increased by 6.14% and 8.62%, respectively. The emulsification and stability of the complexes were improved by refining structural properties as against SPI. The W/O/W emulsions coated by complexes formed the stronger network structure with higher encapsulation efficiency, better interfacial features, and better storage stability. Moreover, the highest bioavailability was achieved by W/O/W emulsions coated with 1:3 ratio complex at 80.69%. This study provided a new strategy towards tailoring ideal emulsion vehicles and expanded the NK application in food formulations.
Collapse
Affiliation(s)
- Danfeng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Miao Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Lizhen Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Yaxin Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Zhiliang Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Wei Wen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
8
|
de Brito AMQ, da Silva Camboim W, Rossi CGFT, de Souza IA, Silva KKOS. The Microemulsion with Solubilization of the Ethanolic Extract of the Leaves of Melão-de-São-Caetano ( Momordica charantia) and Antibacterial Action. J Funct Biomater 2023; 14:359. [PMID: 37504854 PMCID: PMC10381193 DOI: 10.3390/jfb14070359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 07/29/2023] Open
Abstract
Extracts obtained from plants have significantly contributed to the creation of new drugs due to their medicinal properties, which are provided by the presence of bioactive components. This has led to a growing interest from the pharmaceutical industry in using this type of extract for the creation of increasingly advanced medications. The main components sought are antibacterial agents from sustainable and renewable sources, whether of animal or vegetable origin or derived from other natural components. Tissues become a source of microbial proliferation, especially when in contact with the human body, which can cause serious diseases. In line with this, the goal of this research was to create an antibacterial Melon-de-São-Caetano (Momordica charantia) leaf microemulsion for application on material surfaces. This microemulsified system is an effective alternative for solubilizing functional agents, and being thermodynamically stable, it is efficient for long-term use. For this study, an extract of Momordica charantia leaves (EMC) was obtained, and microemulsions with different EMC concentrations (P1, P2, and P3) were produced. The extract and microemulsions were investigated using Fourier Transform Infrared (FTIR) spectroscopy, particle size, zeta potential, thermal stress, pH, electrical conductivity, Transmission Electron Microscopy (TEM), and antibacterial analysis (Staphylococcus aureus). In summary, the proposed objective was met, and EMC, SME, and the P2 and P3 microemulsions showed positive results against S. aureus, with the P3 microemulsified system being the most effective with a 12.5 mm inhibition halo. Therefore, the product developed in this research has the potential for application on surfaces, providing antibacterial action.
Collapse
Affiliation(s)
- Aline M Q de Brito
- Technology Center, Postgraduate Program in Textile Engineering (PpgET), Federal University of Rio Grande do Norte, Natal 1524, RN, Brazil
| | - Wilka da Silva Camboim
- Technology Center, Postgraduate Program in Textile Engineering (PpgET), Federal University of Rio Grande do Norte, Natal 1524, RN, Brazil
| | | | - Ivan A de Souza
- Technology Center, Postgraduate Program in Textile Engineering (PpgET), Federal University of Rio Grande do Norte, Natal 1524, RN, Brazil
- Technology Center, Plasma Materials Processing Laboratory (LABPLASMA), Federal University of Rio Grande do Norte, Natal 1524, RN, Brazil
| | - Késia K O S Silva
- Technology Center, Postgraduate Program in Textile Engineering (PpgET), Federal University of Rio Grande do Norte, Natal 1524, RN, Brazil
| |
Collapse
|
9
|
Jin H, Ma Q, Dou T, Jin S, Jiang L. Raman Spectroscopy of Emulsions and Emulsion Chemistry. Crit Rev Anal Chem 2023; 54:3128-3140. [PMID: 37393560 DOI: 10.1080/10408347.2023.2228411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Emulsions are dispersed systems widely used in various industries. In recent years, Raman spectroscopy (RS), as a spectroscopic technique, has gained much attention for measuring and monitoring emulsions. In this review, we explore the use of RS on emulsion structures and emulsification, important reactions that use emulsions such as emulsion polymerization, catalysis and cascading reactions, as well as various applications of emulsions. We explore how RS is used in emulsions, reactions and applications. RS is a powerful and versatile tool for studying emulsions, but there are also challenges in using RS to monitor emulsion processes, especially if they are rapid or volatile. We also explore these challenges and difficulties, as well as possible designs that can be used to overcome them.
Collapse
Affiliation(s)
- Huaizhou Jin
- Key Laboratory of Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou, China
| | - Qifei Ma
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou China
- Key Lab of Zhejiang Province on Modern Measurement Technology and Instruments, Hangzhou, China
| | - Tingting Dou
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou China
- Key Lab of Zhejiang Province on Modern Measurement Technology and Instruments, Hangzhou, China
| | - Shangzhong Jin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou China
- Key Lab of Zhejiang Province on Modern Measurement Technology and Instruments, Hangzhou, China
| | - Li Jiang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou China
- Key Lab of Zhejiang Province on Modern Measurement Technology and Instruments, Hangzhou, China
| |
Collapse
|
10
|
Chen X, Wu Y, Dau VT, Nguyen NT, Ta HT. Polymeric nanomaterial strategies to encapsulate and deliver biological drugs: points to consider between methods. Biomater Sci 2023; 11:1923-1947. [PMID: 36735240 DOI: 10.1039/d2bm01594c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Biological drugs (BDs) play an increasingly irreplaceable role in treating various diseases such as cancer, and cardiovascular and neurodegenerative diseases. The market share of BDs is increasingly promising. However, the effectiveness of BDs is currently limited due to challenges in efficient administration and delivery, and issues with stability and degradation. Thus, the field is using nanotechnology to overcome these limitations. Specifically, polymeric nanomaterials are common BD carriers due to their biocompatibility and ease of synthesis. Different strategies are available for BD transportation, but the use of core-shell encapsulation is preferable for BDs. This review discusses recent articles on manufacturing methods for encapsulating BDs in polymeric materials, including emulsification, nanoprecipitation, self-encapsulation and coaxial electrospraying. The advantages and disadvantages of each method are analysed and discussed. We also explore the impact of critical synthesis parameters on BD activity, such as sonication in emulsifications. Lastly, we provide a vision of future challenges and perspectives for scale-up production and clinical translation.
Collapse
Affiliation(s)
- Xiangxun Chen
- School of Environment and Science, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia. .,Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia
| | - Yuao Wu
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia
| | - Van Thanh Dau
- School of Engineering and Built Environment, Griffith University, Gold Coast, Queensland 4215, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia
| | - Hang Thu Ta
- School of Environment and Science, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia. .,Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, Brisbane, Queensland 4111, Australia.,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4067, Australia
| |
Collapse
|
11
|
Zhao J, Bhandari B, Gaiani C, Prakash S. Fermentation of almond-based gel incorporated with double emulsion (W1/O/W2): a study on gel properties and effectiveness of double emulsion as a fat replacer. FOOD STRUCTURE 2023. [DOI: 10.1016/j.foostr.2023.100322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
12
|
Zhang C, Gao Y, Wu Y, Zheng Z, Xie Y, Li Y, Li B, Pei Y, Liu S. Construction of stable O/W/O multiple emulsions using beeswax to control the melting point of the continuous oil phase. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Fabrication of gelatin-EGCG-pectin ternary complex stabilized W/O/W double emulsions by ultrasonic emulsification: Physicochemical stability, rheological properties and structure. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Production of nanostructured systems: Main and innovative techniques. Drug Discov Today 2023; 28:103454. [PMID: 36402265 DOI: 10.1016/j.drudis.2022.103454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/24/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
In the constant search for the development of more-specific and more-selective drugs, especially with regard to the challenge of encapsulating hydrophilic molecules, polymer nanotechnologies are remarkable for their biocompatible and biodegradable properties. The most-used nanoencapsulation methods consist of emulsification procedures, where emulsified droplets of a given polymer and drug solidify into nanoparticles after solvent extraction from the polymeric phase. This review introduces conventional emulsification methods but also highlights new emulsification technologies such as microfluidics, membrane emulsification and other techniques, including spray drying, inkjet printing and electrospraying.
Collapse
|
15
|
Determination of the Dominating Coalescence Pathways in Double Emulsion Formulations by Use of Microfluidic Emulsions. Processes (Basel) 2023. [DOI: 10.3390/pr11010234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In water-in-oil-in-water (W1/O/W2) double emulsions several irreversible instability phenomena lead to changes. Besides diffusive processes, coalescence of droplets is the main cause of structural changes. In double emulsions, inner droplets can coalesce with each other (W1–W1 coalescence), inner droplets can be released via coalescence (W1–W2 coalescence) and oil droplets can coalesce with each other (O–O coalescence). Which of the coalescence pathways contributes most to the failure of the double emulsion structure cannot be determined by common measurement techniques. With monodisperse double emulsions produced with microfluidic techniques, each coalescence path can be observed and quantified simultaneously. By comparing the occurrence of all possible coalescence events, different hydrophilic surfactants in combination with PGPR are evaluated and discussed with regard to their applicability in double emulsion formulations. When variating the hydrophilic surfactant, the stability against all three coalescence mechanisms changes. This shows that measuring only one of the coalescence mechanisms is not sufficient to describe the stability of a double emulsion. While some surfactants are able to stabilize against all three possible coalescence mechanisms, some display mainly one of the coalescence mechanisms or in some cases all three mechanisms are observed simultaneously.
Collapse
|
16
|
ØYE G, SIMON S, RUSTAD T, PASO K. Trends in Food Emulsion Technology: Pickering, Nano and Double Emulsions. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
17
|
Zhang L, Gould J, Wolf B. Formulation engineering of water-in-oil-in-water emulsions for salt reduction with sucrose oleate as a PGPR-alternative lipophilic emulsifier. FOOD STRUCTURE 2023. [DOI: 10.1016/j.foostr.2023.100309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Leister N, Götz V, Jan Bachmann S, Nachtigall S, Hosseinpour S, Peukert W, Karbstein H. A comprehensive methodology to study double emulsion stability. J Colloid Interface Sci 2023; 630:534-548. [DOI: 10.1016/j.jcis.2022.10.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/15/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
|
19
|
Subroto E, Andoyo R, Indiarto R, Lembong E, Rahmani F. Physicochemical properties, sensory acceptability, and antioxidant activity of chocolate bar fortified by solid lipid nanoparticles of gallic acid. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2115066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Edy Subroto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Robi Andoyo
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Rossi Indiarto
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Elazmanawati Lembong
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| | - Fani Rahmani
- Department of Food Industrial Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
20
|
Eghbal N, Viton C, Gharsallaoui A. Nano and microencapsulation of bacteriocins for food applications: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Habibi A, Dekiwadia C, Kasapis S, Truong T. Fabrication of double emulsion gel using monoacylglycerol and whey protein concentrate: The effects of primary emulsion gel fraction and particle size. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
22
|
Kumar A, Kaur R, Kumar V, Kumar S, Gehlot R, Aggarwal P. New insights into water-in-oil-in-water (W/O/W) double emulsions: Properties, fabrication, instability mechanism, and food applications. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Nhouchi Z, Watuzola R, Pense-Lheritier AM. A review on octenyl succinic anhydride modified starch-based Pickering-emulsion: Instabilities and ingredients interactions. J Texture Stud 2022; 53:581-600. [PMID: 35119704 DOI: 10.1111/jtxs.12663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/30/2022]
Abstract
Pickering emulsions endow attractive features and a wide versatility in both food and nonfood fields. In the last decades, a noticeable interest has emerged toward the use of octenyl succinic anhydride (OSA)-starch to improve the long-term stability in such systems. In this review, instabilities were pointed out, where a new kinetic equilibrium was observed in Pickering emulsions assigned to migration and size variations of particles. These features were monitored using rheological measurements to understand microstructure and droplets mobility. The elastic modulus (G'), the viscous modulus (G″), and tan(δ) values were attributed to the transition from solid to fluid and assigned to the instability of the formulation regardless of the type of the system configuration. The novelties in using OSA-modified starch, were also exposed. The chemical modification of starch decreased creaming for months. Interaction between OSA-modified starches and some ionic components (potassium, magnesium, and calcium) as well as hydrocolloids and proteins reduced creaming and coalescence due to dense interfacial film. Furthermore, the key parameters (oil fraction, fatty acids composition, oxidative stress oil polarity, and oil viscosity) that govern oil phase in Pickering emulsion, were analyzed. These parameters were found to be positively correlated to the stability of Pickering emulsions.
Collapse
Affiliation(s)
- Zeineb Nhouchi
- School of Industrial Biology - EBI, EBInnov, Cergy, France
| | | | | |
Collapse
|
24
|
Arzani FA, Dos Santos JHZ. Biocides and techniques for their encapsulation: a review. SOFT MATTER 2022; 18:5340-5358. [PMID: 35820409 DOI: 10.1039/d1sm01114f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biocides are compounds that are broadly used to protect products and equipment against microbiological damage. Encapsulation can effectively increase physicochemical stability and allow for controlled release of encapsulated biocides. We categorized microencapsulation into coacervation, sol-gel, and self-assembly methods. The former comprises internal phase separation, interfacial polymerization, and multiple emulsions, and the latter include polymersomes and layer-by-layer techniques. The focus of this review is the description of these categories based on their microencapsulation methods and mechanisms. We discuss the key features and potential applications of each method according to the characteristics of the biocide to be encapsulated, relating the solubility of biocides to the capsule-forming materials, the reactivity between them and the desired release rate. The role of encapsulation in the safety and toxicity of biocide applications is also discussed. Furthermore, future perspectives for biocide applications and encapsulation techniques are presented.
Collapse
Affiliation(s)
- Fernanda A Arzani
- Chemical Engineering Department, Universidade Federal do Rio Grande do Sul, Rua Eng. Luiz Englert s/n, Porto Alegre, 90040-040, Brazil.
| | - João H Z Dos Santos
- Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, 91500-000, Brazil.
| |
Collapse
|
25
|
Tenorio-Garcia E, Araiza-Calahorra A, Simone E, Sarkar A. Recent advances in design and stability of double emulsions: Trends in Pickering stabilization. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Huang X, Tu R, Song H, Dong K, Geng F, Chen L, Huang Q, Wu Y. Gelatin-EGCG-high methoxyl pectin ternary complex stabilized W1/O/W2 double emulsions loaded with vitamin C: Formation, structure, stability, in vitro gastrointestinal digestion. Int J Biol Macromol 2022; 216:891-905. [DOI: 10.1016/j.ijbiomac.2022.07.210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/13/2022]
|
27
|
Optimization of Multiple W 1/O/W 2 Emulsions Processing for Suitable Stability and Encapsulation Efficiency. Foods 2022; 11:foods11091367. [PMID: 35564093 PMCID: PMC9103989 DOI: 10.3390/foods11091367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
Double emulsions are a type of multiple emulsions, which can be defined as a multicompartmentalized system where the droplets are dispersed into the continuous phase containing other emulsions. Although double food-grade emulsions have been manufactured, there is a lack of scientific background related to the influence of different processing conditions. This work analyses the influence of processing variables in (W1/O/W2) double emulsions: passes through the valve homogenizer, pressure applied, lipophilic emulsifier concentration, the ratio between the continuous phase (W2) and the primary emulsion (W1/O), and the incorporation of xanthan gum (XG) as a stabilizer. The results obtained show that these emulsions can be obtained after selecting suitable processing conditions, making them easily scalable in industrial processes. In terms of droplet size distribution, the input of higher energy to the system (20 MPa) during emulsification processing led to emulsions with smaller droplet sizes (D3,2). However, more monodispersed emulsions were achieved when the lowest pressure (5 MPa) was used. As for the number of passes, the optimal (emulsions more monodispersed and smaller droplet sizes) was found around 2–3 passes, regardless of the valve homogenizer pressure. However, emulsions processed at 20 MPa involved lower encapsulation efficiency (EE) than emulsions processed at 5 MPa (87.3 ± 2.3 vs. 96.1 ± 1.8, respectively). The addition of XG led to more structured emulsions, and consequently, their kinetic stability increased. The results obtained indicated that a correct formulation of these W1/O/W2 double emulsions allowed the optimal encapsulation of both hydrophilic and lipophilic bioactive compounds. Thus, the development of food matrices, in the form of multiple emulsions, would allow the encapsulation of bioactive compounds, which would result in the development of novelty food products.
Collapse
|
28
|
Oil Droplet Coalescence in W/O/W Double Emulsions Examined in Models from Micrometer- to Millimeter-Sized Droplets. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6010012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Water-in-oil-in-water (W1/O/W2) double emulsions must resist W1–W1, O–O and W1–W2 coalescence to be suitable for applications. This work isolates the stability of the oil droplets in a double emulsion, focusing on the impact of the concentration of the hydrophilic surfactant. The stability against coalescence was measured on droplets ranging in size from millimeters to micrometers, evaluating three different measurement methods. The time between the contact and coalescence of millimeter-sized droplets at a planar interface was compared to the number of coalescence events in a microfluidic emulsion and to the change in the droplet size distributions of micrometer-sized single and double emulsions. For the examined formulations, the same stability trends were found in all three droplet sizes. When the concentration of the hydrophilic surfactant is reduced drastically, lipophilic surfactants can help to increase the oil droplets’ stability against coalescence. This article also provides recommendations as to which purpose each of the model experiments is suited and discusses advantages and limitations compared to previous research carried out directly on double emulsions.
Collapse
|
29
|
Hua XY, Chiang JH, Henry CJ. Application of plant proteins as alternative emulsifiers in double emulsions: using
kappa
‐carrageenan for complex coacervation and microencapsulation of riboflavin. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Xin Yi Hua
- Clinical Nutrition Research Centre Singapore Institute of Food and Biotechnology Innovation Agency for Science, Technology and Research (A*STAR) Singapore 117599 Singapore
| | - Jie Hong Chiang
- Clinical Nutrition Research Centre Singapore Institute of Food and Biotechnology Innovation Agency for Science, Technology and Research (A*STAR) Singapore 117599 Singapore
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre Singapore Institute of Food and Biotechnology Innovation Agency for Science, Technology and Research (A*STAR) Singapore 117599 Singapore
- Department of Biochemistry Yong Loo Lin School of Medicine National University of Singapore Singapore 117593 Singapore
| |
Collapse
|
30
|
Zhi Z, Liu R, Wang W, Dewettinck K, Van Bockstaele F. Recent progress in oil-in-water-in-oil (O/W/O) double emulsions. Crit Rev Food Sci Nutr 2022; 63:6196-6207. [PMID: 35081829 DOI: 10.1080/10408398.2022.2029346] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Oil-in-water-in-oil (O/W/O) double emulsions are recognized as an advanced design route for oil structuring that shows promising applications in the pharmaceutical, cosmetic, and food fields. This review summarizes the main research advances of O/W/O double emulsions over the past two decades. It mainly focuses on understanding the preparation strategies, stabilization mechanism, and potential applications of O/W/O double emulsions. Several emulsification strategies are discussed, including traditional two-step emulsification method, phase-inversion approach, membrane emulsification, and microfluidic emulsification. Further, the role of interfacial stabilizers and viscosity in the stability of O/W/O double emulsions will be discussed with a focus on synthetic emulsifiers, natural biopolymer sand solid particles for achieving this purpose. Additionally, analytical methods for evaluating the stability of O/W/O double emulsions, such as advanced microscopy, rheology, and labeling assay are reviewed taking into account potential limitations of these characterization techniques. Moreover, possible innovative food applications are highlighted, such as simulating fat substitutes to decrease the trans- or saturated fatty acid content and developing novel delivery and encapsulation systems. This review paves a solid way for the exploration of O/W/O double emulsions toward large-scale implementation within the food industry.
Collapse
Affiliation(s)
- Zijian Zhi
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Rui Liu
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Koen Dewettinck
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Filip Van Bockstaele
- Food Structure and Function (FSF) Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
31
|
Saffarionpour S, Diosady LL. Delivery of Ferric Sodium EDTA by Water-in-Oil-in-Water (W1/O/W2) Double Emulsions: Influence of Carrier Oil on its in Vitro Bioaccessibility. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02756-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Premjit Y, Pandhi S, Kumar A, Rai DC, Duary RK, Mahato DK. Current trends in flavor encapsulation: A comprehensive review of emerging encapsulation techniques, flavour release, and mathematical modelling. Food Res Int 2022; 151:110879. [PMID: 34980409 DOI: 10.1016/j.foodres.2021.110879] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 11/30/2022]
Abstract
Food flavors are volatile compounds that impact the human sensory perception profoundly and find extensive applications in various food products. Because of their volatility and high sensitivity to pH, temperature, oxidation, and external conditions, they require adequate protection to last for a longer duration. Encapsulation plays a critical role in preserving food flavors by enhancing their thermal and oxidative stability, overcoming volatility limitations, and regulating their rapid release with improved bioavailability in food products. The current review focuses on the recent developments in food flavor encapsulation techniques, such as electrospinning/spraying, cyclodextrin inclusion complexes, coacervation, and yeast cell micro-carriers. The review also comprehensively discusses the role of encapsulants in achieving controlled flavor release, the mechanisms involved, and the mathematical modelling for flavor release. Specific well-established nanoencapsulation techniques render better encapsulation efficiency and controlled release of flavor compounds. The review examined specific emerging methods for flavor encapsulation, such as yeast cell encapsulation, which require further exploration and development. This article provides readers with up-to-date information on different encapsulation processes and coating methods used for flavor encapsulation.
Collapse
Affiliation(s)
- Yashaswini Premjit
- Agricultural & Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Arvind Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Dinesh Chandra Rai
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Raj Kumar Duary
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Dipendra Kumar Mahato
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| |
Collapse
|
33
|
Heidari F, Jafari SM, Ziaiifar AM, Malekjani N. Stability and release mechanisms of double emulsions loaded with bioactive compounds; a critical review. Adv Colloid Interface Sci 2022; 299:102567. [PMID: 34839180 DOI: 10.1016/j.cis.2021.102567] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/27/2022]
Abstract
Double emulsions (DEs), known as emulsions of emulsions, are dispersion systems in which the droplets of one dispersed liquid are further dispersed in another liquid, producing double-layered liquid droplets. These systems are widely used in the food and pharmaceutical industries due to their ability to co-encapsulate both hydrophilic and hydrophobic bioactive compounds. However, they are sensitive and unstable and their controlled release is challenging. In this study, first, the stability of DEs and their release mechanisms are reviewed. Then, the factors affecting their stability, and the release of bioactive compounds are studied. Finally, modeling of the release in DEs is discussed. This information can be useful to optimize the formulation of DEs in order to utilize them in different industries.
Collapse
Affiliation(s)
- Fatemeh Heidari
- Department of Food Process Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Basij Square, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Process Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Basij Square, Gorgan, Iran.
| | - Aman Mohammad Ziaiifar
- Department of Food Process Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Basij Square, Gorgan, Iran
| | - Narjes Malekjani
- Department of Food Science and Technology, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| |
Collapse
|
34
|
Leister N, Pfaff D, Karbstein HP. Coalescence of Inner Water Droplets in Double Emulsions Due to Surfactant Transport through Oil. CHEM-ING-TECH 2021. [DOI: 10.1002/cite.202100141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Nico Leister
- Karlsruhe Institute of Technology Institute of Process Engineering in Life Sciences, Food Process Engineering Kaiserstraße 12 76131 Karlsruhe Germany
| | - Daniel Pfaff
- Karlsruhe Institute of Technology Institute of Process Engineering in Life Sciences, Food Process Engineering Kaiserstraße 12 76131 Karlsruhe Germany
| | - Heike Petra Karbstein
- Karlsruhe Institute of Technology Institute of Process Engineering in Life Sciences, Food Process Engineering Kaiserstraße 12 76131 Karlsruhe Germany
| |
Collapse
|
35
|
Novel glass capillary microfluidic devices for the flexible and simple production of multi-cored double emulsions. J Colloid Interface Sci 2021; 611:451-461. [PMID: 34968964 DOI: 10.1016/j.jcis.2021.12.094] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/31/2022]
Abstract
HYPOTHESIS Double emulsions with many monodispersed internal droplets are required for the fabrication of multicompartment microcapsules and tissue-like synthetic materials. These double emulsions can also help to optically resolve different coalescence mechanisms contributing to double emulsion destabilization. Up to date microfluidic double emulsions are limited to either core-shell droplets or droplets with eight or less inner droplets. By applying a two-step jet break-up within one setup, double emulsion droplets filled with up to several hundred monodispersed inner droplets can be achieved. EXPERIMENTS Modular interconnected CNC-milled Lego®-inspired blocks were used to create two separated droplet break-up points within coaxial glass capillaries. Inner droplets were formed by countercurrent flow focusing within a small inner capillary, while outer droplets were formed by co-flow in an outer capillary. The size of inner and outer droplets was independently controlled since the two droplet break-up processes were decoupled. FINDINGS With the developed setup W/O/W and O/W/O double emulsions were produced with different surfactants, oils, and viscosity modifiers to encapsulate 25-400 inner droplets in each outer drop with a volume percentage of inner phase between 7% and 50%. From these emulsions monodispersed multicompartment microcapsules were obtained. The report offers insights on the relationship between the coalescence of internal droplets and their release.
Collapse
|
36
|
Gautam L, Shrivastava P, Yadav B, Jain A, Sharma R, Vyas S, Vyas SP. Multicompartment systems: A putative carrier for combined drug delivery and targeting. Drug Discov Today 2021; 27:1184-1195. [PMID: 34906689 DOI: 10.1016/j.drudis.2021.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 10/27/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
In this review, we discuss recent developments in multicompartment systems commonly referred to as vesosomes, as well as their method of preparation, surface modifications, and clinical potential. Vesosomal systems are able to entrap more than one drug moiety and can be customized for site-specific delivery. We focus in particular on the possible reticuloendothelial system (RES) - mediated accumulation of vesosomes, and their application in tumor targeting, as areas for further investigation.
Collapse
Affiliation(s)
- Laxmikant Gautam
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Priya Shrivastava
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Bhavana Yadav
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Anamika Jain
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Rajeev Sharma
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Sonal Vyas
- Shri Chaitanya Hospital, Sagar, MP 470003, India
| | - S P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India.
| |
Collapse
|
37
|
Mudrić J, Šavikin K, Đekić L, Pavlović S, Kurćubić I, Ibrić S, Đuriš J. Development of Lipid-Based Gastroretentive Delivery System for Gentian Extract by Double Emulsion-Melt Dispersion Technique. Pharmaceutics 2021; 13:pharmaceutics13122095. [PMID: 34959376 PMCID: PMC8704910 DOI: 10.3390/pharmaceutics13122095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Gentian (Gentiana lutea L., Gentianaceae) root extract (GRE) is used for the treatment of gastrointestinal disorders. However, its bioactive potential is limited in conventional forms due to the low bioavailability and short elimination half-life of the dominant bioactive compound, gentiopicroside. The aim of study was to encapsulate GRE in the lipid-based gastroretentive delivery system that could provide high yield and encapsulation efficiency, as well as the biphasic release of gentiopicroside from the tablets obtained by direct compression. Solid lipid microparticles (SLM) loaded with GRE were prepared by freeze-drying double (W/O/W) emulsions, which were obtained by a multiple emulsion-melt dispersion technique, with GRE as the inner water phase, Gelucire® 39/01 or 43/01, as lipid components, with or without the addition of porous silica (Sylysia® 350) in the outer water phase. Formulated SLM powders were examined by SEM and mercury intrusion porosimetry, as well as by determination of yield, encapsulation efficiency, and flow properties. Furthermore, in vitro dissolution of gentiopicroside, the size of the dispersed systems, mechanical properties, and mucoadhesion of tablets obtained by direct compression were investigated. The results have revealed that SLM with the macroporous structure were formulated, and, consequently, the powders floated immediately in the acidic medium. Formulation with porous silica (Sylysia® 350) and Gelucire® 43/01 as a solid lipid was characterized with the high yield end encapsulation efficiency. Furthermore, the mucoadhesive properties of tablets obtained by direct compression of that formulation, as well as the biphasic release of gentiopicroside, presence of nanoassociates in dissolution medium, and optimal mechanical properties indicated that a promising lipid-based gastroretentive system for GRE was developed.
Collapse
Affiliation(s)
- Jelena Mudrić
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia;
- Correspondence:
| | - Katarina Šavikin
- Institute for Medicinal Plants Research “Dr. Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia;
| | - Ljiljana Đekić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (L.Đ.); (I.K.); (S.I.); (J.Đ.)
| | - Stefan Pavlović
- Institute of Chemistry, Technology, and Metallurgy-National Institute for the Republic of Serbia, University of Belgrade, Njegoševa 12, 11001 Belgrade, Serbia;
| | - Ivana Kurćubić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (L.Đ.); (I.K.); (S.I.); (J.Đ.)
| | - Svetlana Ibrić
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (L.Đ.); (I.K.); (S.I.); (J.Đ.)
| | - Jelena Đuriš
- Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (L.Đ.); (I.K.); (S.I.); (J.Đ.)
| |
Collapse
|
38
|
|
39
|
Ilyasoglu Buyukkestelli H, El SN. Enhancing sweetness using double emulsion technology to reduce sugar content in food formulations. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Park D, Kim H, Kim JW. Microfluidic production of monodisperse emulsions for cosmetics. BIOMICROFLUIDICS 2021; 15:051302. [PMID: 34733378 PMCID: PMC8550801 DOI: 10.1063/5.0057733] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/11/2021] [Indexed: 05/06/2023]
Abstract
Droplet-based microfluidic technology has enabled the production of emulsions with high monodispersity in sizes ranging from a few to hundreds of micrometers. Taking advantage of this technology, attempts to generate monodisperse emulsion drops with high drug loading capacity, ordered interfacial structure, and multi-functionality have been made in the cosmetics industry. In this article, we introduce the practicality of the droplet-based microfluidic approach to the cosmetic industry in terms of innovation in productivity and marketability. Furthermore, we summarize some recent advances in the production of emulsion drops with enhanced mechanical interfacial stability. Finally, we discuss the future prospects of microfluidic technology in accordance with consumers' needs and industrial attributes.
Collapse
Affiliation(s)
- Daehwan Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hajeong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
41
|
Tan C, McClements DJ. Application of Advanced Emulsion Technology in the Food Industry: A Review and Critical Evaluation. Foods 2021; 10:foods10040812. [PMID: 33918596 PMCID: PMC8068840 DOI: 10.3390/foods10040812] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
The food industry is one of the major users of emulsion technology, as many food products exist in an emulsified form, including many dressings, sauces, spreads, dips, creams, and beverages. Recently, there has been an interest in improving the healthiness, sustainability, and safety of foods in an attempt to address some of the negative effects associated with the modern food supply, such as rising chronic diseases, environmental damage, and food safety concerns. Advanced emulsion technologies can be used to address many of these concerns. In this review article, recent studies on the development and utilization of these advanced technologies are critically assessed, including nanoemulsions, high internal phase emulsions (HIPEs), Pickering emulsions, multilayer emulsions, solid lipid nanoparticles (SLNs), multiple emulsions, and emulgels. A brief description of each type of emulsion is given, then their formation and properties are described, and finally their potential applications in the food industry are presented. Special emphasis is given to the utilization of these advanced technologies for the delivery of bioactive compounds.
Collapse
Affiliation(s)
- Chen Tan
- China-Canada Joint Laboratory of Food Nutrition and Health (Beijing), Beijing Technology & Business University (BTBU), Beijing 100048, China;
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
- Correspondence: ; Tel.: +1-413-545-2275
| |
Collapse
|
42
|
Influence of Hydrophilic Surfactants on the W1–W2 Coalescence in Double Emulsion Systems Investigated by Single Droplet Experiments. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5020021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Double emulsions are a promising formulation for encapsulation and targeted release in pharmaceutics, cosmetics and food. An inner water phase is dispersed in an oil phase, which is again emulsified in a second water phase. The encapsulated inner water phase can be released via diffusion or via coalescence, neither of which is desired during storage but might be intended during application. The two interfaces in a double emulsion are stabilized by a hydrophilic and a lipophilic surfactant, to prevent the coalescence of the outer and the inner emulsion, respectively. This study focuses on the influence of the hydrophilic surfactant on the release of inner water or actives encapsulated therein via coalescence of the inner water droplet with the outer O–W2 interface. Since coalescence and diffusion are difficult to distinguish in double emulsions, single-droplet experiments were used to quantify differences in the stability of inner droplets. Different lipophilic (PGPH and PEG-30 dipolyhydroxylstearate) and hydrophilic surfactants (ethoxylates, SDS and polymeric) were used and resulted in huge differences in stability. A drastic decrease in stability was found for some combinations, while other combinations resulted in inner droplets that could withstand coalescence longer. The destabilization effect of some hydrophilic surfactants depended on their concentration, but was still present at very low concentrations. A huge spread of the coalescence time for multiple determinations was observed for all formulations and the necessary statistical analysis is discussed in this work. The measured stabilities of single droplets are in good accordance with the stability of double emulsions for similar surfactant combinations found in literature. Therefore, single droplet experiments are suggested for a fast evaluation of potentially suitable surfactant combinations for future studies on double-emulsion stability.
Collapse
|
43
|
Yang J, Tu R, Yuan H, Wang Q, Zhu L. Recent advances in droplet microfluidics for enzyme and cell factory engineering. Crit Rev Biotechnol 2021; 41:1023-1045. [PMID: 33730939 DOI: 10.1080/07388551.2021.1898326] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Enzymes and cell factories play essential roles in industrial biotechnology for the production of chemicals and fuels. The properties of natural enzymes and cells often cannot meet the requirements of different industrial processes in terms of cost-effectiveness and high durability. To rapidly improve their properties and performances, laboratory evolution equipped with high-throughput screening methods and facilities is commonly used to tailor the desired properties of enzymes and cell factories, addressing the challenges of achieving high titer and the yield of the target products at high/low temperatures or extreme pH, in unnatural environments or in the presence of unconventional media. Droplet microfluidic screening (DMFS) systems have demonstrated great potential for exploring vast genetic diversity in a high-throughput manner (>106/h) for laboratory evolution and have been increasingly used in recent years, contributing to the identification of extraordinary mutants. This review highlights the recent advances in concepts and methods of DMFS for library screening, including the key factors in droplet generation and manipulation, signal sources for sensitive detection and sorting, and a comprehensive summary of success stories of DMFS implementation for engineering enzymes and cell factories during the past decade.
Collapse
Affiliation(s)
- Jianhua Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ran Tu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Huiling Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Qinhong Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Leilei Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| |
Collapse
|
44
|
Giuliano CB, Cvjetan N, Ayache J, Walde P. Multivesicular Vesicles: Preparation and Applications. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202000049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Camila Betterelli Giuliano
- Elvesys – Microfluidics Innovation Center 172 Rue de Charonne 75011 Paris France
- University of Strasbourg CNRS ISIS UMR 7006 67000 Strasbourg France
| | - Nemanja Cvjetan
- ETH Zürich Department of Materials Laboratory for Multifunctional Materials Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| | - Jessica Ayache
- Elvesys – Microfluidics Innovation Center 172 Rue de Charonne 75011 Paris France
| | - Peter Walde
- ETH Zürich Department of Materials Laboratory for Multifunctional Materials Vladimir-Prelog-Weg 5 8093 Zürich Switzerland
| |
Collapse
|
45
|
Multiple Emulsions for Enhanced Delivery of Vitamins and Iron Micronutrients and Their Application for Food Fortification. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02586-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
46
|
Pucek A, Tokarek B, Waglewska E, Bazylińska U. Recent Advances in the Structural Design of Photosensitive Agent Formulations Using "Soft" Colloidal Nanocarriers. Pharmaceutics 2020; 12:E587. [PMID: 32599791 PMCID: PMC7356306 DOI: 10.3390/pharmaceutics12060587] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
The growing demand for effective delivery of photosensitive active compounds has resulted in the development of colloid chemistry and nanotechnology. Recently, many kinds of novel formulations with outstanding pharmaceutical potential have been investigated with an expansion in the design of a wide variety of "soft" nanostructures such as simple or multiple (double) nanoemulsions and lipid formulations. The latter can then be distinguished into vesicular, including liposomes and "smart" vesicles such as transferosomes, niosomes and ethosomes, and non-vesicular nanosystems with solid lipid nanoparticles and nanostructured lipid carriers. Encapsulation of photosensitive agents such as drugs, dyes, photosensitizers or antioxidants can be specifically formulated by the self-assembly of phospholipids or other amphiphilic compounds. They are intended to match unique pharmaceutic and cosmetic requirements and to improve their delivery to the target site via the most common, i.e., transdermal, intravenous or oral administration routes. Numerous surface modifications and functionalization of the nanostructures allow increasing their effectiveness and, consequently, may contribute to the treatment of many diseases, primarily cancer. An increasing article number is evidencing significant advances in applications of the different classes of the photosensitive agents incorporated in the "soft" colloidal nanocarriers that deserved to be highlighted in the present review.
Collapse
Affiliation(s)
| | | | | | - Urszula Bazylińska
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland; (A.P.); (B.T.); (E.W.)
| |
Collapse
|