1
|
Sethanan K, Pitakaso R, Srichok T, Khonjun S, Weerayuth N, Prasitpuriprecha C, Preeprem T, Jantama SS, Gonwirat S, Enkvetchakul P, Kaewta C, Nanthasamroeng N. Computer-aided diagnosis using embedded ensemble deep learning for multiclass drug-resistant tuberculosis classification. Front Med (Lausanne) 2023; 10:1122222. [PMID: 37441685 PMCID: PMC10333053 DOI: 10.3389/fmed.2023.1122222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/23/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction This study aims to develop a web application, TB-DRD-CXR, for the categorization of tuberculosis (TB) patients into subgroups based on their level of drug resistance. The application utilizes an ensemble deep learning model that classifies TB strains into five subtypes: drug sensitive tuberculosis (DS-TB), drug resistant TB (DR-TB), multidrug-resistant TB (MDR-TB), pre-extensively drug-resistant TB (pre-XDR-TB), and extensively drug-resistant TB (XDR-TB). Methods The ensemble deep learning model employed in the TB-DRD-CXR web application incorporates novel fusion techniques, image segmentation, data augmentation, and various learning rate strategies. The performance of the proposed model is compared with state-of-the-art techniques and standard homogeneous CNN architectures documented in the literature. Results Computational results indicate that the suggested method outperforms existing methods reported in the literature, providing a 4.0%-33.9% increase in accuracy. Moreover, the proposed model demonstrates superior performance compared to standard CNN models, including DenseNet201, NASNetMobile, EfficientNetB7, EfficientNetV2B3, EfficientNetV2M, and ConvNeXtSmall, with accuracy improvements of 28.8%, 93.4%, 2.99%, 48.0%, 4.4%, and 7.6% respectively. Conclusion The TB-DRD-CXR web application was developed and tested with 33 medical staff. The computational results showed a high accuracy rate of 96.7%, time-based efficiency (ET) of 4.16 goals/minutes, and an overall relative efficiency (ORE) of 100%. The system usability scale (SUS) score of the proposed application is 96.7%, indicating user satisfaction and a likelihood of recommending the TB-DRD-CXR application to others based on previous literature.
Collapse
Affiliation(s)
- Kanchana Sethanan
- Department of Industrial Engineer, Faculty of Engineering, Research Unit on System Modelling for Industry, Khon Kaen University, Khon Kaen, Thailand
| | - Rapeepan Pitakaso
- Department of Industrial Engineer, Faculty of Engineering, Artificial Intelligence Optimization SMART Laboratory, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Thanatkij Srichok
- Department of Industrial Engineer, Faculty of Engineering, Artificial Intelligence Optimization SMART Laboratory, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Surajet Khonjun
- Department of Industrial Engineer, Faculty of Engineering, Artificial Intelligence Optimization SMART Laboratory, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Nantawatana Weerayuth
- Ubon Ratchathani University, Department of Mechanical Engineer, Faculty of Engineering, Ubon Ratchathani, Thailand
| | - Chutinun Prasitpuriprecha
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Thanawadee Preeprem
- Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, Thailand
| | - Sirima Suvarnakuta Jantama
- Ubon Ratchathani University, Division of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani, Thailand
| | - Sarayut Gonwirat
- Department of Industrial Engineer, Faculty of Engineering, Artificial Intelligence Optimization SMART Laboratory, Ubon Ratchathani University, Ubon Ratchathani, Thailand
- Department of Computer Engineering and Automation, Faculty of Engineering, Kalasin University, Kalasin, Thailand
| | - Prem Enkvetchakul
- Department of Industrial Engineer, Faculty of Engineering, Artificial Intelligence Optimization SMART Laboratory, Ubon Ratchathani University, Ubon Ratchathani, Thailand
- Department of Information Technology, Faculty of Sciences, Buriram Rajabhat University, Buriram, Thailand
| | - Chutchai Kaewta
- Department of Industrial Engineer, Faculty of Engineering, Artificial Intelligence Optimization SMART Laboratory, Ubon Ratchathani University, Ubon Ratchathani, Thailand
- Department of Computer Science, Faculty of Computer Sciences, Ubon Ratchathani Rajabhat University, Ubon Ratchathani, Thailand
| | - Natthapong Nanthasamroeng
- Department of Industrial Engineer, Faculty of Engineering, Artificial Intelligence Optimization SMART Laboratory, Ubon Ratchathani University, Ubon Ratchathani, Thailand
- Department of Engineering Technology, Faculty of Industrial Technology, Ubon Ratchathani Rajabhat University, Ubon Ratchathani, Thailand
| |
Collapse
|
2
|
Ensemble Deep Learning Ultimate Tensile Strength Classification Model for Weld Seam of Asymmetric Friction Stir Welding. Processes (Basel) 2023. [DOI: 10.3390/pr11020434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Friction stir welding is a material processing technique used to combine dissimilar and similar materials. Ultimate tensile strength (UTS) is one of the most common objectives of welding, especially friction stir welding (FSW). Typically, destructive testing is utilized to measure the UTS of a welded seam. Testing for the UTS of a weld seam typically involves cutting the specimen and utilizing a machine capable of testing for UTS. In this study, an ensemble deep learning model was developed to classify the UTS of the FSW weld seam. Consequently, the model could classify the quality of the weld seam in relation to its UTS using only an image of the weld seam. Five distinct convolutional neural networks (CNNs) were employed to form the heterogeneous ensemble deep learning model in the proposed model. In addition, image segmentation, image augmentation, and an efficient decision fusion approach were implemented in the proposed model. To test the model, 1664 pictures of weld seams were created and tested using the model. The weld seam UTS quality was divided into three categories: below 70% (low quality), 70–85% (moderate quality), and above 85% (high quality) of the base material. AA5083 and AA5061 were the base materials used for this study. The computational results demonstrate that the accuracy of the suggested model is 96.23%, which is 0.35% to 8.91% greater than the accuracy of the literature’s most advanced CNN model.
Collapse
|
3
|
Prasitpuriprecha C, Jantama SS, Preeprem T, Pitakaso R, Srichok T, Khonjun S, Weerayuth N, Gonwirat S, Enkvetchakul P, Kaewta C, Nanthasamroeng N. Drug-Resistant Tuberculosis Treatment Recommendation, and Multi-Class Tuberculosis Detection and Classification Using Ensemble Deep Learning-Based System. Pharmaceuticals (Basel) 2022; 16:13. [PMID: 36678508 PMCID: PMC9864877 DOI: 10.3390/ph16010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
This research develops the TB/non-TB detection and drug-resistant categorization diagnosis decision support system (TB-DRC-DSS). The model is capable of detecting both TB-negative and TB-positive samples, as well as classifying drug-resistant strains and also providing treatment recommendations. The model is developed using a deep learning ensemble model with the various CNN architectures. These architectures include EfficientNetB7, mobileNetV2, and Dense-Net121. The models are heterogeneously assembled to create an effective model for TB-DRC-DSS, utilizing effective image segmentation, augmentation, and decision fusion techniques to improve the classification efficacy of the current model. The web program serves as the platform for determining if a patient is positive or negative for tuberculosis and classifying several types of drug resistance. The constructed model is evaluated and compared to current methods described in the literature. The proposed model was assessed using two datasets of chest X-ray (CXR) images collected from the references. This collection of datasets includes the Portal dataset, the Montgomery County dataset, the Shenzhen dataset, and the Kaggle dataset. Seven thousand and eight images exist across all datasets. The dataset was divided into two subsets: the training dataset (80%) and the test dataset (20%). The computational result revealed that the classification accuracy of DS-TB against DR-TB has improved by an average of 43.3% compared to other methods. The categorization between DS-TB and MDR-TB, DS-TB and XDR-TB, and MDR-TB and XDR-TB was more accurate than with other methods by an average of 28.1%, 6.2%, and 9.4%, respectively. The accuracy of the embedded multiclass model in the web application is 92.6% when evaluated with the test dataset, but 92.8% when evaluated with a random subset selected from the aggregate dataset. In conclusion, 31 medical staff members have evaluated and utilized the online application, and the final user preference score for the web application is 9.52 out of a possible 10.
Collapse
Affiliation(s)
- Chutinun Prasitpuriprecha
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Sirima Suvarnakuta Jantama
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Thanawadee Preeprem
- Department of Biopharmacy, Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Rapeepan Pitakaso
- Department of Industrial Engineering, Faculty of Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Thanatkij Srichok
- Department of Industrial Engineering, Faculty of Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Surajet Khonjun
- Department of Industrial Engineering, Faculty of Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Nantawatana Weerayuth
- Department of Mechanical Engineering, Faculty of Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Sarayut Gonwirat
- Department of Computer Engineering and Automation, Faculty of Engineering and Industrial Technology, Kalasin University, Kalasin 46000, Thailand
| | - Prem Enkvetchakul
- Department of Information Technology, Faculty of Science, Buriram University, Buriram 31000, Thailand
| | - Chutchai Kaewta
- Department of Computer Science, Faculty of Computer Science, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, Thailand
| | - Natthapong Nanthasamroeng
- Department of Engineering Technology, Faculty of Industrial Technology, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, Thailand
| |
Collapse
|
4
|
Prasitpuriprecha C, Pitakaso R, Gonwirat S, Enkvetchakul P, Preeprem T, Jantama SS, Kaewta C, Weerayuth N, Srichok T, Khonjun S, Nanthasamroeng N. Embedded AMIS-Deep Learning with Dialog-Based Object Query System for Multi-Class Tuberculosis Drug Response Classification. Diagnostics (Basel) 2022; 12:diagnostics12122980. [PMID: 36552987 PMCID: PMC9777254 DOI: 10.3390/diagnostics12122980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
A person infected with drug-resistant tuberculosis (DR-TB) is the one who does not respond to typical TB treatment. DR-TB necessitates a longer treatment period and a more difficult treatment protocol. In addition, it can spread and infect individuals in the same manner as regular TB, despite the fact that early detection of DR-TB could reduce the cost and length of TB treatment. This study provided a fast and effective classification scheme for the four subtypes of TB: Drug-sensitive tuberculosis (DS-TB), drug-resistant tuberculosis (DR-TB), multidrug-resistant tuberculosis (MDR-TB), and extensively drug-resistant tuberculosis (XDR-TB). The drug response classification system (DRCS) has been developed as a classification tool for DR-TB subtypes. As a classification method, ensemble deep learning (EDL) with two types of image preprocessing methods, four convolutional neural network (CNN) architectures, and three decision fusion methods have been created. Later, the model developed by EDL will be included in the dialog-based object query system (DBOQS), in order to enable the use of DRCS as the classification tool for DR-TB in assisting medical professionals with diagnosing DR-TB. EDL yields an improvement of 1.17-43.43% over the existing methods for classifying DR-TB, while compared with classic deep learning, it generates 31.25% more accuracy. DRCS was able to increase accuracy to 95.8% and user trust to 95.1%, and after the trial period, 99.70% of users were interested in continuing the utilization of the system as a supportive diagnostic tool.
Collapse
Affiliation(s)
| | - Rapeepan Pitakaso
- Department of Industrial Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Sarayut Gonwirat
- Department of Computer Engineering and Automation, Kalasin University, Kalasin 46000, Thailand
| | - Prem Enkvetchakul
- Department of Information Technology, Buriram Rajabhat University, Buriram 31000, Thailand
- Correspondence:
| | - Thanawadee Preeprem
- Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | | | - Chutchai Kaewta
- Department of Computer Science, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, Thailand
| | - Nantawatana Weerayuth
- Department of Mechanical Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Thanatkij Srichok
- Department of Industrial Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Surajet Khonjun
- Department of Industrial Engineering, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Natthapong Nanthasamroeng
- Department of Engineering Technology, Ubon Ratchathani Rajabhat University, Ubon Ratchathani 34000, Thailand
| |
Collapse
|