1
|
Tamer Ö, Şimşek M, Dege N, Avcı D, Atalay Y. The effect of complex formation on the static and frequency-dependent nonlinear optical properties: A combined experimental and theoretical investigation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125138. [PMID: 39299066 DOI: 10.1016/j.saa.2024.125138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
A novel mixed ligand Mn(II) complex of 6-Bromopyridine-2-carboxylic acid (6Brpca) and 4,4'-dimethyl-2,2'-dipyridyl has been prepared and structurally characterized using single-crystal X-ray diffraction. The spectroscopic properties were also analyzed by using FT-IR and UV-Vis spectral techniques. The coordination complexes having transition metal ions are known to have promising optical nonlinearity behavior. Therefore, B3LYP level density functional theory was used to investigate first- and second-order hyperpolarizabilities (β and γ) and provide a deep understanding of the relation between the structure and NLO properties. The calculations of frequency-dependent α, β, and γ at frequencies of ω = 0.0856252 and 0.0428126 au. for 6Brpca and Dmdpy ligands as well as Mn(II) complex have been also carried out using B3LYP/LanL2DZ level. Especially second harmonic generation (SHG) first and second hyperpolarizabilities (β(-2ω;ω,ω) and γ (-2ω;ω,ω,0)) parameters for Mn(II) complex have been calculated as 11448 × 10-30 and 680035 × 10-36 esu, respectively. It has been determined that there is a tremendous increase in β and γ parameters when 6Brpca and Dmdpy ligands coordinate to the high spin multiplicity Mn(II) ion. Theoretical calculations revealed that the large first- and second-order hyperpolarizabilities are caused by strong intramolecular charge transfer between the transition metal and the coordinated ligands. These results indicate that the the organometallic complex under investigation is valuable candidate for optoelectronic and photonic applications.
Collapse
Affiliation(s)
- Ömer Tamer
- Sakarya University, Faculty of Science, Department of Physics, Sakarya 54147, Türkiye.
| | - Merve Şimşek
- Sakarya University, Faculty of Science, Department of Physics, Sakarya 54147, Türkiye
| | - Necmi Dege
- OndokuzMayıs University, Faculty of Science, Department of Physics, Samsun 55139, Türkiye
| | - Davut Avcı
- Sakarya University, Faculty of Science, Department of Physics, Sakarya 54147, Türkiye
| | - Yusuf Atalay
- Sakarya University, Faculty of Science, Department of Physics, Sakarya 54147, Türkiye
| |
Collapse
|
2
|
Synthesis, spectroscopic, and molecular interaction study of lead(II) complex of DL-alanine using experimental techniques and quantum chemical calculations. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
3
|
Seijas LE, Belandria LM, Vivas PJ, Guillén M, Burgos JL, Fitch AN, Wright J, Rincón L, Delgado GE, Mora AJ. Two nickel (II) complexes with side chain isomeric ligands: L-leucine and L-isoleucine to study non-covalent interactions and metal-ligand bonding. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Najarianzadeh M, Tarahhomi A, Pishgo S, van der Lee A. Experimental and theoretical study of novel amino-functionalized P(V) coordination compounds suggested as inhibitor of M Pro of SARS-COV-2 by molecular docking study. Appl Organomet Chem 2022; 36:e6636. [PMID: 35538930 PMCID: PMC9073987 DOI: 10.1002/aoc.6636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/18/2023]
Abstract
Amino-functionalized P(V) derivatives providing both N- and O-donor modes have attracted interest owing to their potential to form interesting coordination assemblies with applications such as biological drugs. Novel coordination modes of two- and four-dentate tris (pyridin-2-yl)phosphoric triamide OP[NH-2Py]3 as ([Co(II){[O][NH-2Py]P(O)[Ph]}2(DMF)2], 1) and ([Cu(II)Cl{[NH-2Py]2P(O)[N-2Py]}].DMF, 2) have been synthesized and structurally studied. The metal center environment is distorted octahedral for 1 and distorted square pyramidal for 2. The crystal structure of a new complex of Cu(II) with a Cu[N]4[Cl]2 environment ([Cu(II)Cl2(Pyrazole)4], 3) is also investigated. An evaluation of the inhibitory effect against the coronavirus (Main Protease [MPro] of SARS-CoV-2) was carried out by a molecular docking study and illustrates that these compounds have a good interaction tendency with CoV-2, where 1 has the best binding affinity with the biological target comparable with other SARS-CoV-2 drugs. Moreover, theoretical QTAIM and natural bond orbital (NBO) calculations are used to evaluate the metal-oxygen/-nitrogen bonds suggesting that they are mainly electrostatic in nature with a slight covalent contribution. A molecular packing analysis using Hirshfeld surface (HS) analysis shows that N-H … O (in 1 and 2) and N-H … Cl (in 3) hydrogen bonds are the dominant interactions that contribute to the crystal packing cohesion. The semi-empirical PIXEL method indicates that the electrostatic and repulsion energy components in the structures of 1 and 2 and the dispersion and electrostatic components in that of 3 are the major contributors to the total lattice energy.
Collapse
|
5
|
Study of the molecular interaction between hormone and anti-cancer drug using DFT and vibrational spectroscopic methods. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
6
|
Li B, Geoghegan BL, Wölper C, Cutsail GE, Schulz S. Redox Activity of Noninnocent 2,2'-Bipyridine in Zinc Complexes: An Experimental and Theoretical Study. ACS OMEGA 2021; 6:18325-18332. [PMID: 34308063 PMCID: PMC8296587 DOI: 10.1021/acsomega.1c02201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
We report on a systematical reactivity study of β-diketiminate zinc complexes with redox-active 2,2'-bipyridine (bpy). The reaction of LZnI (L = HC[C(Me)N(2,6-iPr2C6H3)]2) with NaB(C6F5)4 in the presence of bpy yielded [LZn(bpy)][B(C6F5)4] (1), with bpy serving as a neutral ligand, whereas reduction reactions of LZnI with 1 or 2 equiv of KC8 in the presence of bpy gave the radical complex LZn(bpy) (2) and [2.2.2-Cryptand-K][LZn(bpy)] (3), in which bpy either acts as a π-radical anion or a diamagnetic dianion, respectively. The paramagnetic nature of 2 was confirmed via solution magnetic susceptibility measurements, and UV-vis spectroscopy shows that 2 exhibits absorption bands typical for bpy radical species. The EPR spectra of 2 and its deuterated analog 2-d 8 demonstrate that the spin density is localized to the bpy ligand. Density functional theoretical calculations and natural bond orbital analysis were employed to elucidate the electronic structure of complexes 1-3 and accurately reproduced the structural experimental data. It is shown that reduction of the bpy moiety results in a decrease in the β-diketiminate co-ligand bite angle and elongation of the Zn-N(β-diketiminate) bonds, which act cooperatively and in synergy with the bpy ligand by decreasing Zn-N(bpy) bond lengths to stabilize the energy of the LUMO.
Collapse
Affiliation(s)
- Bin Li
- Institute
for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen
(CENIDE), University of Duisburg-Essen, Universitätsstraße 5−7, 45117 Essen, Germany
| | - Blaise L. Geoghegan
- Institute
for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen
(CENIDE), University of Duisburg-Essen, Universitätsstraße 5−7, 45117 Essen, Germany
- Max
Planck Institute for Chemical Energy Conversion (CEC), Stiftstraße 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Christoph Wölper
- Institute
for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen
(CENIDE), University of Duisburg-Essen, Universitätsstraße 5−7, 45117 Essen, Germany
| | - George E. Cutsail
- Institute
for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen
(CENIDE), University of Duisburg-Essen, Universitätsstraße 5−7, 45117 Essen, Germany
- Max
Planck Institute for Chemical Energy Conversion (CEC), Stiftstraße 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Stephan Schulz
- Institute
for Inorganic Chemistry and Center for Nanointegration Duisburg-Essen
(CENIDE), University of Duisburg-Essen, Universitätsstraße 5−7, 45117 Essen, Germany
| |
Collapse
|
7
|
Agwupuye JA, Neji PA, Louis H, Odey JO, Unimuke TO, Bisiong EA, Eno EA, Utsu PM, Ntui TN. Investigation on electronic structure, vibrational spectra, NBO analysis, and molecular docking studies of aflatoxins and selected emerging mycotoxins against wild-type androgen receptor. Heliyon 2021; 7:e07544. [PMID: 34345733 PMCID: PMC8319581 DOI: 10.1016/j.heliyon.2021.e07544] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/17/2021] [Accepted: 07/07/2021] [Indexed: 01/21/2023] Open
Abstract
The geometry, frontier molecular orbitals (FMOs), vibrational, NBO analysis, and molecular docking simulations of aflatoxins (B1, B2, M1, M2, G1, G2), zearalenone (ZEA) emodin (EMO), alternariol (AOH), alternariol monoethyl ether (AMME), and tenuazonic acid (TeA) mycotoxins have been extensively theoretically studied and discussed based on quantum density functional theory calculations using Gaussian 16 software package. The theoretical computation for the geometry optimization, NBOs, and the molecular docking interaction was conducted using Density Functional Theory with B3LYP/6-31+G(d,p), NBO program, and AutoDock Vina tools respectively. Charge delocalization patterns and second-order perturbation energies of the most interacting natural bond orbitals (NBOs) of these mycotoxins have also been computed and predicted. Interestingly, among the mycotoxins investigated, aflatoxin G1 is seen to give the strongest stabilization energy while Zearalenone shows the highest tendency to accept electron(s) and emodin, an emerging mycotoxin gave the best binding pose within the androgen receptor pocket with a mean binding affinity of -7.40 kcal/mol.
Collapse
Affiliation(s)
- John A. Agwupuye
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
- Computational Quantum Chemistry Research Group, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Peter A. Neji
- Department of Chemistry, Faculty of Sciences, Cross River University of Technology, Calabar, Nigeria
| | - Hitler Louis
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
- Computational Quantum Chemistry Research Group, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Joseph O. Odey
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Tomsmith O. Unimuke
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Emmanuel A. Bisiong
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Ededet A. Eno
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Patrick M. Utsu
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Tabe N. Ntui
- Department of Chemistry, Faculty of Sciences, Cross River University of Technology, Calabar, Nigeria
| |
Collapse
|
8
|
Cantero-López P, Hidalgo-Rosa Y, Sandoval-Olivares Z, Santoyo-Flores J, Mella P, Arrué L, Zúñiga C, Arratia-Pérez R, Páez-Hernández D. The role of zero-field splitting and π-stacking interaction of different nitrogen-donor ligands on the optical properties of luminescent rhenium tricarbonyl complexes. NEW J CHEM 2021. [DOI: 10.1039/d1nj01544c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, a systematic evaluation of the role of zero-field splitting (ZFS), and the geometric arrangement of different nitrogen-donor ligands, including π-stacking interactions, in five selected rhenium luminescent complexes was performed.
Collapse
Affiliation(s)
- Plinio Cantero-López
- Center of Applied Nanoscience (CANS)
- Facultad de Ciencias Exactas
- Universidad Andres Bello
- Santiago
- Chile
| | - Yoan Hidalgo-Rosa
- Doctorado en Fisicoquímica Molecular
- Universidad Andres Bello
- Santiago de Chile
- Chile
- ANID – Millennium Science Initiative Program- Millennium Nuclei on Catalytic Process towards Sustainable Chemistry (CSC)
| | | | | | - Pablo Mella
- Doctorado en Fisicoquímica Molecular
- Universidad Andres Bello
- Santiago de Chile
- Chile
- Universidad Andres Bello
| | - Lily Arrué
- Doctorado en Fisicoquímica Molecular
- Universidad Andres Bello
- Santiago de Chile
- Chile
| | - César Zúñiga
- Instituto de Ciencias Naturales
- Facultad de Medicina Veterinaria y Agronomía
- Universidad de Las Américas
- Sede Providencia
- 7500972 Santiago
| | - Ramiro Arratia-Pérez
- Center of Applied Nanoscience (CANS)
- Facultad de Ciencias Exactas
- Universidad Andres Bello
- Santiago
- Chile
| | - Dayán Páez-Hernández
- Center of Applied Nanoscience (CANS)
- Facultad de Ciencias Exactas
- Universidad Andres Bello
- Santiago
- Chile
| |
Collapse
|