1
|
Ali SA, Ahmad T. Decorating Thermodynamically Stable (101) Facets of TiO 2 with MoO 3 for Multifunctional Sustainable Hydrogen Energy and Ammonia Gas Sensing Applications. Inorg Chem 2024; 63:304-315. [PMID: 38146688 DOI: 10.1021/acs.inorgchem.3c03176] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The simultaneous realization of sustainable energy and gas sensors dealing with the emission of pollutants is indispensable as the former thrives on the minimization of the latter. However, there is a dearth of multifunctional nanocatalysts in the literature. This ascertains the importance of multifunctional semiconductors which can be utilized in H2 generation via overall water splitting and in the gas sensing of global pollutants such as NH3. MoO3-decorated TiO2 Z-scheme heterostructures exceptionally escalate the photochemical and photo/electrochemical H2 evolution performance and gas sensing response of TiO2 owing to the synergistic relationship between TiO2 and MoO3. Extensive structural, morphological, and optical characterizations, theoretical studies, and XPS results were exploited to develop a mechanistic framework of photochemical H2 evolution. The photochemical response of the optimum TiO2-MoO3 composition (20 wt % MoO3-TiO2) was found to be nearly 12- and 20-fold superior to the pristine TiO2 and MoO3 photocatalysts, respectively, with the remarkable H2 evolution rate of 9.18 mmol/g/h and AQY of 36.02%. In addition, 20 wt % MoO3-TiO2 also showed advanced photo/electrochemical efficiency with 0.61/0.7 V overpotential values toward HER due to the higher electrochemically active surface area and Tafel slope as low as 65 mV/dec. The gas sensing response of 20 wt % MoO3-TiO2 toward NH3 gas turned out to be 2.5-fold higher than that of the pristine TiO2 gas sensor.
Collapse
Affiliation(s)
- Syed Asim Ali
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
2
|
Song T, Li J, Deng Q, Gao Y. Preparation, Characterization, Photochromic Properties, and Mechanism of PMoA/ZnO/PVP Composite Film. Molecules 2023; 28:7605. [PMID: 38005327 PMCID: PMC10675673 DOI: 10.3390/molecules28227605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
A novel photochromic heteropolyacid-based composite film consisting of phosphomolybdic acid (PMoA), ZnO, and polyvinylpyrrolidone (PVP) was fabricated by a sol-gel process. The microstructure and photochromic properties of the PMoA/ZnO/PVP were characterized via Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible spectroscopy (UV-Vis). The FTIR spectra showed that the basic structures of ZnO and PVP, and the Keggin structure of PMoA in the PMoA/ZnO/PVP composite film, had not been destroyed during the preparation. The TEM images demonstrated that ZnO presented a rod-like structure, while PMoA was spherical, and many PMoA balls adhered to the surface of the ZnO rods. The XPS spectra of Mo 3d indicated that the valency of Mo atoms in the PMoA/ZnO/PVP was changed by visible light exposure. After visible light irradiation, the PMoA/ZnO/PVP varied from slight yellow to blue, while undergoing an opposite color change upon heating. The discoloration mechanism of the PMoA/ZnO/PVP was consistent with the photoelectron transfer mechanism.
Collapse
Affiliation(s)
- Tiehong Song
- Urban Construction College, Changchun University of Architecture and Civil Engineering, Changchun 130600, China
| | - Jinyao Li
- Key Lab of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (J.L.); (Q.D.)
- Liao Yuan Vocational Technical College, Liaoyuan 136200, China
| | - Qiyuan Deng
- Key Lab of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (J.L.); (Q.D.)
| | - Yanjiao Gao
- College of Civil Engineering and Architecture, Liaoning University of Technology, Jinzhou 121001, China;
| |
Collapse
|
3
|
Alhalili Z. Metal Oxides Nanoparticles: General Structural Description, Chemical, Physical, and Biological Synthesis Methods, Role in Pesticides and Heavy Metal Removal through Wastewater Treatment. Molecules 2023; 28:3086. [PMID: 37049850 PMCID: PMC10096196 DOI: 10.3390/molecules28073086] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Nanotechnology (NT) is now firmly established in both the private home and commercial markets. Due to its unique properties, NT has been fully applied within multiple sectors like pharmacy and medicine, as well as industries like chemical, electrical, food manufacturing, and military, besides other economic sectors. With the growing demand for environmental resources from an ever-growing world population, NT application is a very advanced new area in the environmental sector and offers several advantages. A novel template synthesis approach is being used for the promising metal oxide nanostructures preparation. Synthesis of template-assisted nanomaterials promotes a greener and more promising protocol compared to traditional synthesis methods such as sol-gel and hydrothermal synthesis, and endows products with desirable properties and applications. It provides a comprehensive general view of current developments in the areas of drinking water treatment, wastewater treatment, agriculture, and remediation. In the field of wastewater treatment, we focus on the adsorption of heavy metals and persistent substances and the improved photocatalytic decomposition of the most common wastewater pollutants. The drinking water treatment section covers enhanced pathogen disinfection and heavy metal removal, point-of-use treatment, and organic removal applications, including the latest advances in pesticide removal.
Collapse
Affiliation(s)
- Zahrah Alhalili
- Department of Chemistry, College of Science and Arts-Sajir, Shaqra University, Sahqra 17684, Saudi Arabia
| |
Collapse
|
4
|
Fabrication of High Surface Area TiO2-MoO3 Nanocomposite as a Photocatalyst for Organic Pollutants Removal from Water Bodies. Catalysts 2023. [DOI: 10.3390/catal13020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Abstract
A nanocomposite (NC) of titanium (IV) oxide (TiO2) and molybdenum (VI) oxide (MoO3) was synthesized using a hydrothermal route. Detailed analyses using transmission electron microscopy, X-ray diffraction, X-ray fluorescence (XRF), Brunauer–Emmett–Teller (BET) isotherms, X-ray photoelectron spectroscopy, Raman, and diffuse reflectance infrared Fourier transform spectroscopy were carried out and confirmed the successful formation of pure TiO2-MoO3 (Ti-Mo) NC. The Ti-Mo NC possesses sizes in the range of 150–500 nm. XPS, Raman, and DRIFT shift measurements confirmed the formation of mixed oxide linkage in the form of Ti-O-Mo. Sorption of nitrogen isotherms revealed a significant increase in the number and pore widths of mesopores in the NC. Water sorption isotherms revealed enhanced affinity of the nanocomposites for water relative to the pure metal oxides. The BET surface area for Ti-Mo NC from the nitrogen adsorption isotherm was 129.3 m2/g which is much higher than the pure metal oxides (i.e., 37.56 m2/g for TiO2 and 2.21 m2/g for MoO3). The Ti-Mo NC provided suitable adsorption sites that captured the studied carbamates from the solution and promoted their photodegradation process. The photocatalytic degradation of MB in the presence of the catalyst was enhanced by 2.9 and 5.5 folds upon irradiation with white LED and 302 nm UV light sources, respectively.
Collapse
|
5
|
Alnaggar G, Hezam A, Bajiri MA, Drmosh QA, Ananda S. Sulfate radicals induced from peroxymonosulfate on electrochemically synthesized TiO 2-MoO 3 heterostructure with Ti-O-Mo bond charge transfer pathway for potential organic pollutant removal under solar light irradiation. CHEMOSPHERE 2022; 303:134562. [PMID: 35413371 DOI: 10.1016/j.chemosphere.2022.134562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Here, a novel method for synthesis of heterostructured TiO2-MoO3 (MT) nanosheets photocatalyst by utilizing a facile electrochemical method and examined it's photocatalytic activity by the degradation of tetracycline hydrochloride (TCH), a model of organic pollutants, in the presence of peroxymonosulfate (PMS) under solar light irradiation (SL) was reported for the first time. The influence of several factors on the degradation efficiency including the initial concentration of TCH, solution pH, catalyst dosage, PMS concentration, and the existence of inorganic anions was explored. The MT-15/PMS system displayed a promising photocatalytic performance and up to 97% of TCH was degraded in 90 min the rate of the degradation reaction of MT-15/PMS was the highest (0.05299 min-1) compared to 0.00251, 0.00337, 0.00546, 0.00735, 0.01337min-1of TiO2-P25, TiO2-P25/PMS, MoO3, MoO3/PMS, and MT-15 respectively. The enhancement can be attributed to several reasons. First, the 2D morphology of the optimized heterostructure photocatalyst plays a significant role in providing much more active sites on its surface. Next, the boosted light absorption efficiency and higher photoproduced electron-hole pair separation ability, induced by the unique direct transformation of photogenerated electrons from the valance band of TiO2 to the conduction band of MoO3 via the Ti-O-Mo bond formed at the interface of MT heterostructure. Finally, the appropriate accessible reactive sites for the activation of PMS together with the synergistic effect between activation of PMS and photocatalytic processes eased the production of active species for the degradation of pollutants. Based on the scavenger experiments and EPR analysis, hydroxide and sulfate radicals were found to be the dominant free radical active species in the degradation process. Furthermore, the synergistic degradation reaction mechanism was proposed.
Collapse
Affiliation(s)
- Gubran Alnaggar
- Department of Studies in Chemistry, University of Mysore, Manasagangothiri, Mysuru, 570006, India
| | - Abdo Hezam
- Department of Physics, Faculty of Science, Ibb University, Ibb, Yemen; Leibniz-Institute for Catalysis at the University of Rostock, 18059, Rostock, Germany
| | - Mohammed Abdullah Bajiri
- Department of Studies and Research in Industrial Chemistry, School of Chemical Sciences, Kuvempu University, Shankaraghatta, 577 451, India
| | - Q A Drmosh
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Sannaiah Ananda
- Department of Studies in Chemistry, University of Mysore, Manasagangothiri, Mysuru, 570006, India.
| |
Collapse
|
6
|
Paul S, Rahman MA, Sharif SB, Kim JH, Siddiqui SET, Hossain MAM. TiO 2 as an Anode of High-Performance Lithium-Ion Batteries: A Comprehensive Review towards Practical Application. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2034. [PMID: 35745373 PMCID: PMC9228895 DOI: 10.3390/nano12122034] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 12/10/2022]
Abstract
Lithium-ion batteries (LIBs) are undeniably the most promising system for storing electric energy for both portable and stationary devices. A wide range of materials for anodes is being investigated to mitigate the issues with conventional graphite anodes. Among them, TiO2 has attracted extensive focus as an anode candidate due to its green technology, low volume fluctuations (<4%), safety, and durability. In this review, the fabrication of different TiO2 nanostructures along with their electrochemical performance are presented. Different nanostructured TiO2 materials including 0D, 1D, 2D, and 3D are thoroughly discussed as well. More precisely, the breakthroughs and recent developments in different anodic oxidation processes have been explored to identify in detail the effects of anodization parameters on nanostructure morphology. Clear guidelines on the interconnected nature of electrochemical behaviors, nanostructure morphology, and tunable anodic constraints are provided in this review.
Collapse
Affiliation(s)
- Sourav Paul
- Department of Mechanical Engineering, Chittagong University of Engineering and Technology, Chittagong 4349, Bangladesh; (S.P.); (S.-E.-T.S.); (M.A.M.H.)
| | - Md. Arafat Rahman
- Department of Mechanical Engineering, Chittagong University of Engineering and Technology, Chittagong 4349, Bangladesh; (S.P.); (S.-E.-T.S.); (M.A.M.H.)
| | - Sazzad Bin Sharif
- Department of Mechanical Engineering, International University of Business Agriculture and Technology, Dhaka 1230, Bangladesh;
| | - Jin-Hyuk Kim
- Clean Energy R&D Department, Korea Institute of Industrial Technology, 89 Yangdaegiro-gil, Ipjang-myeon, Seobuk-gu, Cheonan-si 31056, Chungcheongnam-do, Korea
| | - Safina-E-Tahura Siddiqui
- Department of Mechanical Engineering, Chittagong University of Engineering and Technology, Chittagong 4349, Bangladesh; (S.P.); (S.-E.-T.S.); (M.A.M.H.)
| | - Md. Abu Mowazzem Hossain
- Department of Mechanical Engineering, Chittagong University of Engineering and Technology, Chittagong 4349, Bangladesh; (S.P.); (S.-E.-T.S.); (M.A.M.H.)
| |
Collapse
|
7
|
Design and Microwave-Assisted Synthesis of TiO2-Lanthanides Systems and Evaluation of Photocatalytic Activity under UV-LED Light Irradiation. Catalysts 2021. [DOI: 10.3390/catal12010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The TiO2-Eu and TiO2-La systems were successfully synthesized using the microwave method. Based on the results of X-ray diffraction analysis, it was found that regardless of the analyzed systems, two crystal structures were noted for the obtained samples: anatase and rutile. The analysis, such as XPS and EDS, proved that the doped lanthanum and europium nano-particles are present only on the TiO2 surface without disturbing the crystal lattice. In the synthesized systems, there were no significant changes in the bandgap energy. Moreover, all the obtained systems were characterized by high thermal stability. One of the key objectives of the work, and a scientific novelty, was the introduction of UV-LED lamps into the metronidazole photo-oxidation pathway. The results of the photo-oxidation study showed that the obtained TiO2 systems doped with selected lanthanides (Eu or La) show high efficiency in the removal of metronidazole, and at the same consuming nearly 10 times less electricity compared to conventional UV lamps (high-pressure mercury lamp). Liquid-chromatography mass-spectrometry (LC-MS) analysis of an intermediate solution showed the presence of fragments of the degraded molecule by m/z 114, 83, and 60, prompting the formulation of a plausible photodegradation pathway for metronidazole.
Collapse
|
8
|
Kubiak A, Żółtowska S, Gabała E, Szybowicz M, Siwińska-Ciesielczyk K, Jesionowski T. Controlled microwave-assisted and pH-affected growth of ZnO structures and their photocatalytic performance. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.03.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|