1
|
Cousins JRL, Mottram NJ, Wilson SK. Hele-Shaw flow of a nematic liquid crystal. Phys Rev E 2024; 110:034702. [PMID: 39425443 DOI: 10.1103/physreve.110.034702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/11/2024] [Indexed: 10/21/2024]
Abstract
Motivated by the variety of applications in which nematic Hele-Shaw flow occurs, a theoretical model for Hele-Shaw flow of a nematic liquid crystal is formulated and analyzed. We derive the thin-film Ericksen-Leslie equations that govern nematic Hele-Shaw flow, and consider two important limiting cases in which we can make significant analytical progress. First, we consider the leading-order problem in the limiting case in which elasticity effects dominate viscous effects, and find that the nematic liquid crystal anchoring on the plates leads to a fixed director field and an anisotropic patterned viscosity that can be used to guide the flow of the nematic. Second, we consider the leading-order problem in the opposite limiting case in which viscous effects dominate elasticity effects, and find that the flow is identical to that of an isotropic fluid and the behavior of the director is determined by the flow. As an example of the insight which can be gained by using the present approach, we then consider the flow of nematic according to a simple model for the squeezing stage of the one-drop-filling method, an important method for the manufacture of liquid crystal displays, in these two limiting cases.
Collapse
|
2
|
Gautam B, Lintuvuori JS. Microswimmers Knead Nematics into Cholesterics. PHYSICAL REVIEW LETTERS 2024; 132:238301. [PMID: 38905647 DOI: 10.1103/physrevlett.132.238301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/30/2024] [Indexed: 06/23/2024]
Abstract
The hydrodynamic stresses created by active particles can destabilize orientational order present in the system. This is manifested, for example, by the appearance of a bend instability in active nematics or in quasi-two-dimensional living liquid crystals consisting of swimming bacteria in thin nematic films. Using large-scale hydrodynamics simulations, we study a system consisting of spherical microswimmers within a three-dimensional nematic liquid crystal. We observe a spontaneous chiral symmetry breaking, where the uniform nematic state is kneaded into a continuously twisting state, corresponding to a helical director configuration akin to a cholesteric liquid crystal. The transition arises from the hydrodynamic coupling between the liquid crystalline elasticity and the swimmer flow fields, leading to a twist-bend instability of the nematic order. It is observed for both pusher (extensile) and puller (contractile) swimmers. Further, we show that the liquid crystal director and particle trajectories are connected: in the cholesteric state the particle trajectories become helicoidal.
Collapse
Affiliation(s)
- Bhavesh Gautam
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| | | |
Collapse
|
3
|
Bezrukov A, Galeeva A, Krupin A, Galyametdinov Y. Molecular Orientation Behavior of Lyotropic Liquid Crystal-Carbon Dot Hybrids in Microfluidic Confinement. Int J Mol Sci 2024; 25:5520. [PMID: 38791556 PMCID: PMC11122583 DOI: 10.3390/ijms25105520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Lyotropic liquid crystals represent an important class of anisotropic colloid systems. Their integration with optically active nanoparticles can provide us with responsive luminescent media that offer new fundamental and applied solutions for biomedicine. This paper analyzes the molecular-level behavior of such composites represented by tetraethylene glycol monododecyl ether and nanoscale carbon dots in microfluidic channels. Microfluidic confinement allows for simultaneously applying multiple factors, such as flow dynamics, wall effects, and temperature, for the precise control of the molecular arrangement in such composites and their resulting optical properties. The microfluidic behavior of composites was characterized by a set of analytical and modeling tools such as polarized and fluorescent microscopy, dynamic light scattering, and fluorescent spectroscopy, as well as image processing in Matlab. The composites were shown to form tunable anisotropic intermolecular structures in microchannels with several levels of molecular ordering. A predominant lamellar structure of the composites was found to undergo additional ordering with respect to the microchannel axis and walls. Such an alignment was controlled by applying shear and temperature factors to the microfluidic environment. The revealed molecular behavior of the composite may contribute to the synthesis of hybrid organized media capable of polarized luminescence for on-chip diagnostics and biomimetics.
Collapse
Affiliation(s)
- Artem Bezrukov
- Department of Physical and Colloid Chemistry, Kazan National Research Technological University, 68 Karl Marx Str., 420015 Kazan, Russia; (A.G.); (A.K.); (Y.G.)
| | | | | | | |
Collapse
|
4
|
Verma A, Mateo T, Quintero Botero J, Mohankumar N, Fraccia TP. Microfluidics-Based Drying-Wetting Cycles to Investigate Phase Transitions of Small Molecules Solutions. Life (Basel) 2024; 14:472. [PMID: 38672743 PMCID: PMC11050796 DOI: 10.3390/life14040472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Drying-wetting cycles play a crucial role in the investigation of the origin of life as processes that both concentrate and induce the supramolecular assembly and polymerization of biomolecular building blocks, such as nucleotides and amino acids. Here, we test different microfluidic devices to study the dehydration-hydration cycles of the aqueous solutions of small molecules, and to observe, by optical microscopy, the insurgence of phase transitions driven by self-assembly, exploiting water pervaporation through polydimethylsiloxane (PDMS). As a testbed, we investigate solutions of the chromonic dye Sunset Yellow (SSY), which self-assembles into face-to-face columnar aggregates and produces nematic and columnar liquid crystal (LC) phases as a function of concentration. We show that the LC temperature-concentration phase diagram of SSY can be obtained with a fair agreement with previous reports, that droplet hydration-dehydration can be reversibly controlled and automated, and that the simultaneous incubation of samples with different final water contents, corresponding to different phases, can be implemented. These methods can be further extended to study the assembly of diverse prebiotically relevant small molecules and to characterize their phase transitions.
Collapse
Affiliation(s)
- Ajay Verma
- IPGG, CBI UMR 8231—CNRS—ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Tiphaine Mateo
- IPGG, CBI UMR 8231—CNRS—ESPCI Paris, PSL Research University, 75005 Paris, France
| | | | - Nishanth Mohankumar
- IPGG, CBI UMR 8231—CNRS—ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Tommaso P. Fraccia
- IPGG, CBI UMR 8231—CNRS—ESPCI Paris, PSL Research University, 75005 Paris, France
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
5
|
Fu H, Huang J, van der Tol JJB, Su L, Wang Y, Dey S, Zijlstra P, Fytas G, Vantomme G, Dankers PYW, Meijer EW. Supramolecular polymers form tactoids through liquid-liquid phase separation. Nature 2024; 626:1011-1018. [PMID: 38418913 PMCID: PMC10901743 DOI: 10.1038/s41586-024-07034-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/05/2024] [Indexed: 03/02/2024]
Abstract
Liquid-liquid phase separation (LLPS) of biopolymers has recently been shown to play a central role in the formation of membraneless organelles with a multitude of biological functions1-3. The interplay between LLPS and macromolecular condensation is part of continuing studies4,5. Synthetic supramolecular polymers are the non-covalent equivalent of macromolecules but they are not reported to undergo LLPS yet. Here we show that continuously growing fibrils, obtained from supramolecular polymerizations of synthetic components, are responsible for phase separation into highly anisotropic aqueous liquid droplets (tactoids) by means of an entropy-driven pathway. The crowding environment, regulated by dextran concentration, affects not only the kinetics of supramolecular polymerizations but also the properties of LLPS, including phase-separation kinetics, morphology, internal order, fluidity and mechanical properties of the final tactoids. In addition, substrate-liquid and liquid-liquid interfaces proved capable of accelerating LLPS of supramolecular polymers, allowing the generation of a myriad of three-dimensional-ordered structures, including highly ordered arrays of micrometre-long tactoids at surfaces. The generality and many possibilities of supramolecular polymerizations to control emerging morphologies are demonstrated with several supramolecular polymers, opening up a new field of matter ranging from highly structured aqueous solutions by means of stabilized LLPS to nanoscopic soft matter.
Collapse
Affiliation(s)
- Hailin Fu
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Department of Chemistry and Chemical Engineering and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Jingyi Huang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Biomedical Engineering and Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Joost J B van der Tol
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Chemistry and Chemical Engineering and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Lu Su
- Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Yuyang Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Swayandipta Dey
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Peter Zijlstra
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - George Fytas
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Max Planck Institute for Polymer Research, Mainz, Germany
- Institute of Electronic Structure and Laser, FO.R.T.H, Heraklion, Greece
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Chemistry and Chemical Engineering and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Patricia Y W Dankers
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Biomedical Engineering and Laboratory of Chemical Biology, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
- Department of Chemistry and Chemical Engineering and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
- School of Chemistry and RNA Institute, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Fedorowicz K, Prosser R, Sengupta A. Curvature-mediated programming of liquid crystal microflows. SOFT MATTER 2023; 19:7084-7092. [PMID: 37661799 DOI: 10.1039/d3sm00846k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Despite the recognized role of liquid crystal microfluidics in generating programmable, self-organized and guided flow properties, to date, the flow behavior of LCs within curved channels remains unexplored. Using experiments and numerical simulations, we demonstrate that the curvature of microscale conduits allow programming of liquid crystal (LC) flows. Focusing on a nematic LC flowing through U- and L-shaped channels - two simple yet fundamental curved flow paths - with rectangular cross-section, our results reveal that the curvature of flow path can trigger transverse flow-induced director gradients. The emergent director field feeds back into the flow field, ultimately leading to LC flows controlled by the channel curvature. This curvature-mediated flow control, identified by polarizing optical microscopy and supported by the nematofluidic solutions, offers concepts in LC microfluidic valves, wherein the throughput distribution is determined by the Ericksen number and variations in local curvature. Finally, this work leverages curvature to amplify (suppress) LC transport through flow-aligned (homeotropic) regions emerging within channels with bends, in a programmable manner. Our results demonstrating the dependence of the dynamic flow-director coupling on the local curvature will have far-reaching ramifications in advancing the understanding of LC-based passive and active biological systems under real life geometrical constraints.
Collapse
Affiliation(s)
- Kamil Fedorowicz
- School of Engineering, The University of Manchester, Manchester M13 9PL, UK.
| | - Robert Prosser
- School of Engineering, The University of Manchester, Manchester M13 9PL, UK.
| | - Anupam Sengupta
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, 162 A, Avenue de la Faïencerie, L-1511 Luxembourg City, Luxembourg.
| |
Collapse
|
7
|
Ulaganathan V, Sengupta A. Spatio-temporal programming of lyotropic phase transition in nanoporous microfluidic confinements. J Colloid Interface Sci 2023; 649:302-312. [PMID: 37352561 DOI: 10.1016/j.jcis.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/04/2023] [Accepted: 06/03/2023] [Indexed: 06/25/2023]
Abstract
HYPOTHESIS The nanoporous polydimethylsiloxane (PDMS) surfaces of a rectangular microfluidic channel, selectively uptakes water molecules, concentrating the solute molecules in an aqueous phase, that could drive phase transitions. Factors such as surface wettability, channel geometry, the surface-to-volume ratio, and surface topography of the confinements could play a key role in tuning the phase transitions spatio-temporally. EXPERIMENTS Using a lyotropic chromonic liquid crystal as model biological material, confined within nanoporous microfluidic environments, we study molecular assembly driven by nanoporous substrates. By combining timelapse polarized imaging, quantitative image processing, and a simple mathematical model, we analyze the phase transitions and construct a master diagram capturing the role of surface wettability, channel geometry and embedded topography on programmable lyotropic phase transitions. FINDINGS Intrinsic PDMS nanoporosity and confinement cross-section, together with the imposed wettability regulate the rate of the N-M phase transition; whereas the microfluidic geometry and embedded topography enable phase transition at targeted locations. We harness the emergent long-range order during N-M transition to actuate elasto-advective transport of embedded micro-cargo, demonstrating particle manipulation concepts governed by tunable phase transitions. Our results present a programmable physical route to material assembly in microfluidic environment, and offer a new paradigm for assembling genetic components, biological cargo, and minimal synthetic cells.
Collapse
Affiliation(s)
- Vamseekrishna Ulaganathan
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, 162 A, Avenue de la Faïencerie, L-1511 Luxembourg City, Luxembourg
| | - Anupam Sengupta
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, 162 A, Avenue de la Faïencerie, L-1511 Luxembourg City, Luxembourg.
| |
Collapse
|
8
|
Pal A, Gope A, Sengupta A. Drying of bio-colloidal sessile droplets: Advances, applications, and perspectives. Adv Colloid Interface Sci 2023; 314:102870. [PMID: 37002959 DOI: 10.1016/j.cis.2023.102870] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 04/03/2023]
Abstract
Drying of biologically-relevant sessile droplets, including passive systems such as DNA, proteins, plasma, and blood, as well as active microbial systems comprising bacterial and algal dispersions, has garnered considerable attention over the last decades. Distinct morphological patterns emerge when bio-colloids undergo evaporative drying, with significant potential in a wide range of biomedical applications, spanning bio-sensing, medical diagnostics, drug delivery, and antimicrobial resistance. Consequently, the prospects of novel and thrifty bio-medical toolkits based on drying bio-colloids have driven tremendous progress in the science of morphological patterns and advanced quantitative image-based analysis. This review presents a comprehensive overview of bio-colloidal droplets drying on solid substrates, focusing on the experimental progress during the last ten years. We provide a summary of the physical and material properties of relevant bio-colloids and link their native composition (constituent particles, solvent, and concentrations) to the patterns emerging due to drying. We specifically examined the drying patterns generated by passive bio-colloids (e.g., DNA, globular, fibrous, composite proteins, plasma, serum, blood, urine, tears, and saliva). This article highlights how the emerging morphological patterns are influenced by the nature of the biological entities and the solvent, micro- and global environmental conditions (temperature and relative humidity), and substrate attributes like wettability. Crucially, correlations between emergent patterns and the initial droplet compositions enable the detection of potential clinical abnormalities when compared with the patterns of drying droplets of healthy control samples, offering a blueprint for the diagnosis of the type and stage of a specific disease (or disorder). Recent experimental investigations of pattern formation in the bio-mimetic and salivary drying droplets in the context of COVID-19 are also presented. We further summarized the role of biologically active agents in the drying process, including bacteria, algae, spermatozoa, and nematodes, and discussed the coupling between self-propulsion and hydrodynamics during the drying process. We wrap up the review by highlighting the role of cross-scale in situ experimental techniques for quantifying sub-micron to micro-scale features and the critical role of cross-disciplinary approaches (e.g., experimental and image processing techniques with machine learning algorithms) to quantify and predict the drying-induced features. We conclude the review with a perspective on the next generation of research and applications based on drying droplets, ultimately enabling innovative solutions and quantitative tools to investigate this exciting interface of physics, biology, data sciences, and machine learning.
Collapse
Affiliation(s)
- Anusuya Pal
- University of Warwick, Department of Physics, Coventry CV47AL, West Midlands, UK; Worcester Polytechnic Institute, Department of Physics, Worcester 01609, MA, USA.
| | - Amalesh Gope
- Tezpur University, Department of Linguistics and Language Technology, Tezpur 784028, Assam, India
| | - Anupam Sengupta
- University of Luxembourg, Physics of Living Matter, Department of Physics and Materials Science, Luxembourg L-1511, Luxembourg
| |
Collapse
|
9
|
Ge B, Zhang Q, Zhang R, Lin JT, Tseng PH, Chang CW, Dong CY, Zhou R, Yaqoob Z, Bischofberger I, So PTC. Single-Shot Quantitative Polarization Imaging of Complex Birefringent Structure Dynamics. ACS PHOTONICS 2021; 8:3440-3447. [PMID: 37292495 PMCID: PMC10249439 DOI: 10.1021/acsphotonics.1c00788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polarization light microscopes are powerful tools for probing molecular order and orientation in birefringent materials. While a number of polarization microscopy techniques are available to access steady-state properties of birefringent samples, quantitative measurements of the molecular orientation dynamics on the millisecond time scale have remained a challenge. We propose polarized shearing interference microscopy (PSIM), a single-shot quantitative polarization imaging method, for extracting the retardance and orientation angle of the laser beam transmitting through optically anisotropic specimens with complex structures. The measurement accuracy and imaging performance of PSIM are validated by imaging a birefringent resolution target and a bovine tendon specimen. We demonstrate that PSIM can quantify the dynamics of a flowing lyotropic chromonic liquid crystal in a microfluidic channel at an imaging speed of 506 frames per second (only limited by the camera frame rate), with a field-of-view of up to 350 × 350 μm2 and a diffraction-limit spatial resolution of ~2 μm. We envision that PSIM will find a broad range of applications in quantitative material characterization under dynamical conditions.
Collapse
Affiliation(s)
- Baoliang Ge
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Qing Zhang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rui Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Jing-Tang Lin
- Department of Physics, National Taiwan University, Taipei 106 Taiwan, Republic of China
| | - Po-Hang Tseng
- Department of Physics, National Taiwan University, Taipei 106 Taiwan, Republic of China
| | - Che-Wei Chang
- Department of Physics, National Taiwan University, Taipei 106 Taiwan, Republic of China
| | - Chen-Yuan Dong
- Department of Physics, National Taiwan University, Taipei 106 Taiwan, Republic of China
| | - Renjie Zhou
- Department of Biomedical Engineering, The Chinese University of Hong Kong, New Territories, Hong Kong 999077, China
| | - Zahid Yaqoob
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Irmgard Bischofberger
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Peter T C So
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Laser Biomedical Research Center and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Yu JJ, Chen LF, Li GY, Li YR, Huang Y, Bake M, Tian Z. Rotational viscosity of nematic lyotropic chromonic liquid crystals. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Structures and topological defects in pressure-driven lyotropic chromonic liquid crystals. Proc Natl Acad Sci U S A 2021; 118:2108361118. [PMID: 34446562 DOI: 10.1073/pnas.2108361118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lyotropic chromonic liquid crystals are water-based materials composed of self-assembled cylindrical aggregates. Their behavior under flow is poorly understood, and quantitatively resolving the optical retardance of the flowing liquid crystal has so far been limited by the imaging speed of current polarization-resolved imaging techniques. Here, we employ a single-shot quantitative polarization imaging method, termed polarized shearing interference microscopy, to quantify the spatial distribution and the dynamics of the structures emerging in nematic disodium cromoglycate solutions in a microfluidic channel. We show that pure-twist disclination loops nucleate in the bulk flow over a range of shear rates. These loops are elongated in the flow direction and exhibit a constant aspect ratio that is governed by the nonnegligible splay-bend anisotropy at the loop boundary. The size of the loops is set by the balance between nucleation forces and annihilation forces acting on the disclination. The fluctuations of the pure-twist disclination loops reflect the tumbling character of nematic disodium cromoglycate. Our study, including experiment, simulation, and scaling analysis, provides a comprehensive understanding of the structure and dynamics of pressure-driven lyotropic chromonic liquid crystals and might open new routes for using these materials to control assembly and flow of biological systems or particles in microfluidic devices.
Collapse
|
12
|
Sengupta A. Novel optofluidic concepts enabled by topological microfluidics-INVITED. EPJ WEB OF CONFERENCES 2021. [DOI: 10.1051/epjconf/202125510002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The coupling between flow and director orientation of liquid crystals (LCs) has been long utilized to devise wide-ranging applications spanning modern displays, medical and environmental solutions, and bio-inspired designs and applications. LC-based optofluidic platforms offer a non-invasive handle to modulate light and material fields, both locally and dynamically. The flow-driven reorientation of the LC molecules can tailor distinct optical and mechanical responses in microfluidic confinements, and harness the coupling therein. Yet the synergy between traditional optofluidics with isotropic fluids and LC microfluidics remains at its infancy. Here, we discuss emerging optofluidic concepts based on Topological Microfluidics, leveraging microfluidic control of topological defects and defect landscapes. With a specific focus on the role of surface anchoring and microfluidic geometry, we present recent and ongoing works that harness flow-controlled director and defect configurations to modulate optical fields. The flow-induced optical attributes, and the corresponding feedback, is enhanced in the vicinity of the topological defects which geenerate distinct isotropic opto-material properties within an anisotropic matrix. By harnessing the rich interplay of confining geometry, anchoring and micro-scale nematodynamics, topological microfluidics offers a promising platform to ideate the next generation of optofluidic and optomechnical concepts.
Collapse
|