1
|
Synthesis, X-ray Structure and Biological Studies of New Self-Assembled Cu(II) Complexes Derived from s-triazine Schiff Base Ligand. Molecules 2022; 27:molecules27092989. [PMID: 35566339 PMCID: PMC9106035 DOI: 10.3390/molecules27092989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/04/2023] Open
Abstract
The two ligands 2-(1-(2-(4,6-dimorpholino-1,3,5-triazin-2-yl)hydrazono)ethyl)aniline (DMAT) and 2-(1-(2-(4,6-dimorpholino-1,3,5-triazin-2-yl)hydrazono)ethyl)phenol (DMOHT) were used to synthesize three heteroleptic Cu(II) complexes via a self-assembly technique. The structure of the newly synthesized complexes was characterized using elemental analysis, FTIR and X-ray photoelectron spectroscopy (XPS) to be [Cu(DMAT)(H2O)(NO3)]NO3.C2H5OH (1), [Cu(DMOT)(CH3COO)] (2) and [Cu(DMOT)(NO3)] (3). X-ray single-crystal structure of complex 1 revealed a hexa-coordinated Cu(II) ion with one DMAT as a neutral tridentate NNN-chelate, one bidentate nitrate group and one water molecule. In the case of complex 2, the Cu(II) is tetra-coordinated with one DMOT as an anionic tridentate NNO-chelate and one monodentate acetate group. The antimicrobial, antioxidant and anticancer activities of the studied compounds were examined. Complex 1 had the best anticancer activity against the lung carcinoma A-549 cell line (IC50 = 5.94 ± 0.58 µM) when compared to cis-platin (25.01 ± 2.29 µM). The selectivity index (SI) of complex 1 was the highest (6.34) when compared with the free ligands (1.3–1.8), and complexes 2 (0.72) and 3 (2.97). The results suggested that, among those compounds studied, complex 1 is the most promising anticancer agent against the lung carcinoma A-549 cell line. In addition, complex 1 had the highest antioxidant activity (IC50 = 13.34 ± 0.58 µg/mL) which was found to be comparable to the standard ascorbic acid (IC50 = 10.62 ± 0.84 µg/mL). Additionally, complex 2 showedbroad-spectrum antimicrobial action against the microbes studied. The results revealed it to possess the strongest action of all the three complexes against B. subtilis. The MIC values found are 39.06, 39.06 and 78.125 mg/mL for complexes 1–3, respectively.
Collapse
|
2
|
Altowyan MS, Soliman SM, Lasri J, Eltayeb NE, Haukka M, Barakat A, El-Faham A. A New Pt(II) Complex with Anionic s-Triazine Based NNO-Donor Ligand: Synthesis, X-ray Structure, Hirshfeld Analysis and DFT Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051628. [PMID: 35268727 PMCID: PMC8911880 DOI: 10.3390/molecules27051628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 12/02/2022]
Abstract
The reaction of PtCl2 with s-triazine-type ligand (HTriaz) (1:1) in acetone under heating afforded a new [Pt(Triaz)Cl] complex. Single-crystal X-ray diffraction analysis showed that the ligand (HTriaz) is an NNO tridentate chelate via two N-atoms from the s-triazine and hydrazone moieties and one oxygen from the deprotonated phenolic OH. The coordination environment of the Pt(II) is completed by one Cl−1 ion trans to the Pt-N(hydrazone). Hirshfeld surface analysis showed that the most dominant interactions are the H···H, H···C and O···H intermolecular contacts. These interactions contributed by 60.9, 11.2 and 8.3% from the whole fingerprint area, respectively. Other minor contributions from the Cl···H, C···N, N···H and C···C contacts were also detected. Among these interactions, the most significant contacts are the O···H, H···C and H···H interactions. The amounts of the electron transfer from the ligand groups to Pt(II) metal center were predicted using NBO calculations. Additionally, the electronic spectra were assigned based on the TD-DFT calculations.
Collapse
Affiliation(s)
- Mezna Saleh Altowyan
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Saied M. Soliman
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt;
- Correspondence: (S.M.S.); (J.L.); (A.B.)
| | - Jamal Lasri
- Department of Chemistry, Rabigh College of Science and Arts, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Correspondence: (S.M.S.); (J.L.); (A.B.)
| | - Naser E. Eltayeb
- Department of Chemistry, Rabigh College of Science and Arts, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland;
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (S.M.S.); (J.L.); (A.B.)
| | - Ayman El-Faham
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt;
| |
Collapse
|
3
|
Synthesis, and Molecular Structure Investigations of a New s-Triazine Derivatives Incorporating Pyrazole/Piperidine/Aniline Moieties. CRYSTALS 2021. [DOI: 10.3390/cryst11121500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this work, we synthesized two new s-triazine incorporates pyrazole/piperidine/aniline moieties. Molecular structure investigations in the light of X-ray crystallography combined with Hirshfeld and DFT calculations were presented. Intermolecular interactions controlling the molecular packing of 4-(3,5-dimethyl-1H-pyrazol-1-yl)-N-phenyl-6-(piperidin-1-yl)-1,3,5-triazin-2-amine; 5a and N-(4-bromophenyl)-4-(3,5-dimethyl-1H-pyrazol-1-yl)-6-(piperidin-1-yl)-1,3,5-triazin-2-amine; 5b were analyzed using Hirshfeld calculations. The most dominant interactions are the H...H, N...H and H...C contacts in both compounds. The N...H and H...C interactions in 5a and the N...H, Br...H and H...H interactions in 5b are the most important. In addition, DFT calculations were used to compute the molecular structures of 5a and 5b; then, their electronic properties, as well as the 1H- and 13C-NMR spectra, were predicted. Both compounds are polar where 5a (1.018 Debye) has lower dipole moment than 5b (4.249 Debye). The NMR chemical shifts were calculated and very good correlations between the calculated and experimental data were obtained (R2 = 0.938–0.997).
Collapse
|
4
|
Barakat A, El‐Faham A, Haukka M, Al‐Majid AM, Soliman SM. s
‐Triazine pincer ligands: Synthesis of their metal complexes, coordination behavior, and applications. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6317] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Assem Barakat
- Department of Chemistry, College of Science King Saud University PO Box 2455 Riyadh 11451 Saudi Arabia
- Department of Chemistry, Faculty of Science Alexandria University PO Box 426, Ibrahimia Alexandria 21321 Egypt
| | - Ayman El‐Faham
- Department of Chemistry, College of Science King Saud University PO Box 2455 Riyadh 11451 Saudi Arabia
- Department of Chemistry, Faculty of Science Alexandria University PO Box 426, Ibrahimia Alexandria 21321 Egypt
| | - Matti Haukka
- Department of Chemistry University of Jyväskylä PO Box 35 Jyväskylä FI‐40014 Finland
| | | | - Saied M. Soliman
- Department of Chemistry, Faculty of Science Alexandria University PO Box 426, Ibrahimia Alexandria 21321 Egypt
| |
Collapse
|
5
|
A Novel Centrosymmetric Fe(III) Complex with Anionic Bis-pyrazolyl-s-triazine Ligand; Synthesis, Structural Investigations and Antimicrobial Evaluations. Symmetry (Basel) 2021. [DOI: 10.3390/sym13071247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Reaction of 2,4-bis(3,5-dimethyl-1H-pyrazol-1-yl)-6-methoxy-1,3,5-triazine (MBPT) pincer ligand with FeCl3 in acidic medium (1:1 v/v) afforded the [Fe(BPT)Cl2(CH3OH)] complex of the hydrolyzed monobasic ligand: 4,6-bis(3,5-dimethyl-1H-pyrazol-1-yl)-1,3,5-triazin-2(1H)-one (HBPT). In this complex, the Fe(III) ion is hexacoordinated with one anionic pincer ligand unit (BPT−1), two chloride ions, and one coordinated methanol molecule. It crystallized in the monoclinic crystal system and centrosymmetric P21/c space group with Z = 2 and unit cell parameters of a = 7.309(2) Å, b = 25.461(8) Å, c = 9.918(3) Å and β = 102.646(7)°. The structure of this complex is stabilized by C–H…Cl intramolecular hydrogen bonding interactions with donor acceptor distances ranging from 3.577(3)–3.609(3) Å while its supramolecular structure is controlled by intermolecular O–H…O, O–H…N, and C–H…Cl hydrogen bonding interactions. Hirshfeld analysis of molecular packing indicates that the percentages of the Cl…H, C…O, O…H, C…C, H…C, and N…H contacts are 21.1, 1.7, 10.2, 2.1, 8.6, and 10.4%, respectively. The nature and relative strength of the different coordination interactions in the [Fe(BPT)Cl2(CH3OH)] complex are discussed based on atoms in molecules theory. Antimicrobial evaluations indicated that the [Fe(BPT)Cl2(CH3OH)] complex showed moderate antibacterial and antifungal activities compared to amoxicillin and ampicillin antibiotics as standard drugs.
Collapse
|
6
|
Soliman SM, Massoud RA, Al-Rasheed HH, El-Faham A. Syntheses and Structural Investigations of Penta-Coordinated Co(II) Complexes with Bis-Pyrazolo- S-Triazine Pincer Ligands, and Evaluation of Their Antimicrobial and Antioxidant Activities. Molecules 2021; 26:molecules26123633. [PMID: 34198604 PMCID: PMC8232275 DOI: 10.3390/molecules26123633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 01/01/2023] Open
Abstract
Two penta-coordinated [Co(MorphBPT)Cl2]; 1 and [Co(PipBPT)Cl2]; 2 complexes with the bis-pyrazolyl-s-triazine pincer ligands MorphBPT and PipBPT were synthesized and characterized. Both MorphBPT and PipBPT act as NNN-tridentate pincer chelates coordinating the Co(II) center with one short Co-N(s-triazine) and two longer Co-N(pyrazole) bonds. The coordination number of Co(II) is five in both complexes, and the geometry around Co(II) ion is a distorted square pyramidal in 1, while 2 shows more distortion. In both complexes, the packing is dominated by Cl…H, C-H…π, and Cl…C (anion-π stacking) interactions in addition to O…H interactions, which are found only in 1. The UV-Vis spectral band at 564 nm was assigned to metal–ligand charge transfer transitions based on TD-DFT calculations. Complexes 1 and 2 showed higher antimicrobial activity compared to the respective free ligand MorphBPT and PipBPT, which were not active. MIC values indicated that 2 had better activity against S. aureus, B. subtilis, and P. vulgaris than 1. DPPH free radical scavenging assay revealed that all the studied compounds showed weak to moderate antioxidant activity where the nature of the substituent at the s-triazine core has a significant impact on the antioxidant activity.
Collapse
Affiliation(s)
- Saied M. Soliman
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt;
- Correspondence: (S.M.S.); (A.E.-F.); Tel.: +20-111-1361-059 (S.M.S.); +966-114-673-195 (A.E.-F.)
| | - Raghdaa A. Massoud
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt;
| | - Hessa H. Al-Rasheed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Ayman El-Faham
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt;
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Correspondence: (S.M.S.); (A.E.-F.); Tel.: +20-111-1361-059 (S.M.S.); +966-114-673-195 (A.E.-F.)
| |
Collapse
|