1
|
Subramanian K, Rathinam Y, Ganesan R, Venkatasamy RS. Investigation of g-C 3N 4/Ce 2(WO 4) 3 Nanocomposites for the Removal of Basic Dyes. ACS OMEGA 2024; 9:10110-10118. [PMID: 38463307 PMCID: PMC10918798 DOI: 10.1021/acsomega.3c06147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 03/12/2024]
Abstract
Herein, we have synthesized pristine and g-C3N4-assisted Ce2(WO4)3 via a facile hydrothermal method. The structure was confirmed with the standard JCPDS card. g-C3N4 encapsulated the crystal and reduced the size. The Raman spectra revealed the presence of Ce-O, W-O stretching and bending vibrations. Electron hole transfer facilitation and controllable recombination were altered by g-C3N4 heterojunction with cerium tungstate. Ce2(WO4)3 possessed a larger band gap. As g-C3N4 was assisted, the band gap was reduced which facilitates Ce2(WO4)3 to utilize more visible light. The prepared photocatalysts were used to investigate the model pollutant removal with visible light. The pure Janus Green B sample showed lesser efficiency, as it does not show self-degradation under light. As Ce2(WO4)3 was added, it slightly improved the efficiency as it possesses lower electron hole transfer and high recombination. Thus, g-C3N4 was composited with Ce2(WO4)3 to make heterojunctions which will enhance the photo-excited electron and hole transfer and decrease e-/h+ recombination. The rate constant values of the photocatalysts were calculated, and the system follows the first-order pseudo-kinetic model. Ciprofloxacin, a well-known antibiotic, was also used to degrade under visible light. The pure sample showed lower efficiency, and the antibiotic was reduced well with the addition of prepared photocatalysts. The modification of Ce2(WO4)3 with the optimum-level g-C3N4 facilitated electron hole charge transfer, and numerous adsorbed dye molecules on the photocatalyst surface made 0.1 g g-C3N4-Ce2(WO4)3 a plausible photocatalyst for the water remediation process.
Collapse
Affiliation(s)
| | - Yuvakkumar Rathinam
- Department of Physics, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
| | - Ravi Ganesan
- Department of Physics, Alagappa University, Karaikudi, Tamil Nadu 630 003, India
- Department of Physics, Chandigarh University, Mohali, Punjab 140 413, India
| | - Ravi Sankar Venkatasamy
- Department of Civil Engineering, Thiagarajar College of Engineering, Madurai, Tamil Nadu 625015, India
| |
Collapse
|
2
|
Ren Z, Ma H, Geng J, Liu C, Song C, Lv Y. ZnO QDs/GO/g-C 3N 4 Preparation and Photocatalytic Properties of Composites. MICROMACHINES 2023; 14:1501. [PMID: 37630037 PMCID: PMC10456475 DOI: 10.3390/mi14081501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023]
Abstract
Using an ultrasound-assisted chemical technique, ZnO quantum dot and ZnO composites were created. The optical characteristics and structural details of these composites were examined using TEM, XRD, XPS, FT-IR, UV-vis, and BET. The results revealed that both the ZnO quantum dot composite and ZnO composite exhibited outstanding optical properties, making them suitable for photocatalytic reactions. In order to analyze the photocatalytic performance, a degradation experiment was conducted using Rhodamine B solution as the simulation dye wastewater. The experiment demonstrated that the degradation of Rhodamine B followed the first-order reaction kinetics equation when combined with the photocatalytic reaction kinetics. Moreover, through cyclic stability testing, it was determined that the ZnO QDs-GO-g-C3N4 composite sample showed good stability and could be reused. The degradation rates of Rhodamine B solution using ZnO-GO-g-C3N4 and ZnO QDs-GO-g-C3N4 reached 95.25% and 97.16%, respectively. Furthermore, free-radical-trapping experiments confirmed that ·O2- was the main active species in the catalytic system and its photocatalytic mechanism was elucidated. The photocatalytic oxidation of ZnO quantum dots in this study has important reference value and provides a new idea for the subsequent research.
Collapse
Affiliation(s)
- Zhixin Ren
- College of Pharmacy, Jiamusi University, Jiamusi 154000, China
| | - Huachao Ma
- College of Pharmacy, Jiamusi University, Jiamusi 154000, China
| | - Jianxin Geng
- College of Pharmacy, Jiamusi University, Jiamusi 154000, China
| | - Cuijuan Liu
- College of Pharmacy, Jiamusi University, Jiamusi 154000, China
| | - Chaoyu Song
- College of Pharmacy, Jiamusi University, Jiamusi 154000, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuguang Lv
- College of Pharmacy, Jiamusi University, Jiamusi 154000, China
| |
Collapse
|
3
|
Alshammari K, Alotaibi T, Alshammari M, Alhassan S, Alshammari AH, Taha TAM. Synthesis of Sulfur@g-C 3N 4 and CuS@g-C 3N 4 Catalysts for Hydrogen Production from Sodium Borohydride. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4218. [PMID: 37374402 DOI: 10.3390/ma16124218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 06/29/2023]
Abstract
In this work, the S@g-C3N4 and CuS@g-C3N4 catalysts were prepared via the polycondensation process. The structural properties of these samples were completed on XRD, FTIR and ESEM techniques. The XRD pattern of S@g-C3N4 presents a sharp peak at 27.2° and a weak peak at 13.01° and the reflections of CuS belong to the hexagonal phase. The interplanar distance decreased from 0.328 to 0.319 nm that facilitate charge carrier separation and promoting H2 generation. FTIR data revealed the structural change according to absorption bands of g-C3N4. ESEM images of S@g-C3N4 exhibited the described layered sheet structure for g-C3N4 materials and CuS@g-C3N4 demonstrated that the sheet materials were fragmented throughout the growth process. The data of BET revealed a higher surface area (55 m2/g) for the CuS-g-C3N4 nanosheet. The UV-vis absorption spectrum of S@g-C3N4 showed a strong peak at 322 nm, which weakened after the growth of CuS at g-C3N4. The PL emission data showed a peak at 441 nm, which correlated with electron-hole pair recombination. The data of hydrogen evolution showed improved performance for the CuS@g-C3N4 catalyst (5227 mL/g·min). Moreover, the activation energy was determined for S@g-C3N4 and CuS@g-C3N4, which showed a lowering from 47.33 ± 0.02 to 41.15 ± 0.02 KJ/mol.
Collapse
Affiliation(s)
- Khulaif Alshammari
- Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Turki Alotaibi
- Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Majed Alshammari
- Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Sultan Alhassan
- Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | - Alhulw H Alshammari
- Physics Department, College of Science, Jouf University, Sakaka P.O. Box 2014, Saudi Arabia
| | | |
Collapse
|
4
|
Liu Q, Tan S, Sun R, Nie G, Liu Y, Wu Q, Wang Z, Yu H, Yu S, Jiang X, Zhang F, Liu S. Ni-B/Mesoporous Graphitic Carbon Nitride Catalyst Boosts Natural Product Cis-pinane Via Catalytic Reduction of α-Pinene. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
5
|
Facile Synthesis of Poly(o-anisidine)/Graphitic Carbon Nitride/Zinc Oxide Composite for Photo-Catalytic Degradation of Congo Red Dye. Catalysts 2023. [DOI: 10.3390/catal13020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Growing industry and its effluents create a serious environmental concern. Various industrial wastes such as toxic dyes and volatile organic compounds are posing a threat to a clean environment because of their non-biodegradable nature and high chemical stability. In recent years, the degradation of toxic dyes and drugs by photo-catalysts has gained much importance and proved a successful approach to capture light by hybrid photo-catalysts for decomposing toxic organic molecules. This work presents the synthesis of a poly(o-anisidine)-based composite with graphitic carbon nitride and zinc oxide (POA/g-C3N4/ZnO) and its utilization as a photo-catalyst. Various analytical techniques investigated the synthesized photo-catalysts’ chemical structure, crystallinity, and morphology. The degradation of Congo red dye evaluated the efficiency of the photo-catalyst in an aqueous medium under ultraviolet light. It was revealed that the photo-catalytic activity of the synthesized POA/g-C3N4/ZnO composites show 81.43%, 92.28%, and 87.05% degradation. This sustainable composite will be highly beneficial to treat industrial wastewater to make our environment clean.
Collapse
|
6
|
He Q, Zhan S, Zhou F. A Tandem Reaction System for Inactivation of Marine Microorganisms by Commercial Carbon Black and Boron-Doped Carbon Nitride. ACS OMEGA 2022; 7:16524-16535. [PMID: 35601316 PMCID: PMC9118206 DOI: 10.1021/acsomega.2c00679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
The Pureballast system, based on photocatalytic technology, can purify ships' ballast water. However, the efficiency of photocatalytic sterilization still needs to be improved due to the shortcomings of the photocatalyst itself and the complex components of seawater. In this work, a tandem reaction of electrocatalytic synthesis and photocatalytic decomposition of hydrogen peroxide (H2O2) was constructed for the inactivation of marine microorganisms. Using seawater and air as raw materials, electrocatalytic synthesis of H2O2 by commercial carbon black can avoid the risk of large-scale storage and transportation of H2O2 on ships. In addition, boron doping can improve the photocatalytic decomposition performance of H2O2 by g-C3N4. Experimental results show that constructing the tandem reaction is effective, inactivating 99.7% of marine bacteria within 1 h. The sterilization efficiency is significantly higher than that of the single way of electrocatalysis (52.8%) or photocatalysis (56.9%). Consequently, we analyzed the reasons for boron doping to enhance the efficiency of g-C3N4 decomposition of H2O2 based on experiments and first principles. The results showed that boron doping could significantly enhance not only the transfer kinetics of photogenerated electrons but also the adsorption capacity of H2O2. This work can provide some reference for the photocatalytic technology study of ballast water treatment.
Collapse
|
7
|
Das S, Chowdhury A. Recent advancements of g-C 3N 4-based magnetic photocatalysts towards the degradation of organic pollutants: a review. NANOTECHNOLOGY 2021; 33:072004. [PMID: 34731840 DOI: 10.1088/1361-6528/ac3614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Heterogeneous photocatalysis premised on advanced oxidation processes has witnessed a broad application perspective, including water purification and environmental remediation. In particular, the graphitic carbon nitride (g-C3N4), an earth-abundant metal-free conjugated polymer, has acquired extensive application scope and interdisciplinary consideration owing to its outstanding structural and physicochemical properties. However, several issues such as the high recombination rate of the photo-generated electron-hole pairs, smaller specific surface area, and lower electrical conductivity curtail the catalytic efficacy of bulk g-C3N4. Another challenging task is separating the catalyst from the reaction medium, limiting their reusability and practical applications. Therefore, several methodologies are adopted strategically to tackle these issues. Attention is being paid, especially to the magnetic nanocomposites (NCs) based catalysts to enhance efficiency and proficient reusability property. This review summarizes the latest progress related to the design and development of magnetic g-C3N4-based NCs and their utilization in photocatalytic systems. The usefulness of the semiconductor heterojunctions on the catalytic activity, working mechanism, and degradation of pollutants are discussed in detail. The major challenges and prospects of using magnetic g-C3N4-based NCs for photocatalytic applications are highlighted in this report.
Collapse
Affiliation(s)
- Suma Das
- Organic Electronics & Sensor Laboratory, Department of Physics, National Institute of Technology Silchar, Assam 788010, India
| | - Avijit Chowdhury
- Organic Electronics & Sensor Laboratory, Department of Physics, National Institute of Technology Silchar, Assam 788010, India
- Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
8
|
Stroyuk O, Raievska O, Zahn DRT. Single-layer carbon nitride: synthesis, structure, photophysical/photochemical properties, and applications. Phys Chem Chem Phys 2021; 23:20745-20764. [PMID: 34542127 DOI: 10.1039/d1cp03457j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This Perspective provides a critical summary of the current state of the art in the synthesis and properties of polyheptazine single-layer carbon nitride (SLCN). The summary combines the authors' research and literature reports on SLCN concerning the synthesis of single-layer polyheptazine sheets, light absorption and emission by SLCN, photochemical and photocatalytic properties of SLCN as well as examples of applications of SLCN sheets as "building blocks" in heterostructures with nanocrystalline semiconductors and metals. The Perspective is concluded with an outlook discussing the most promising directions for further studies and applications of SLCN and related composites.
Collapse
Affiliation(s)
- Oleksandr Stroyuk
- Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), Immerwahrstr. 2, 91058 Erlangen, Germany.
| | - Oleksandra Raievska
- Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany. .,Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, D-09107 Chemnitz, Germany
| | - Dietrich R T Zahn
- Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany. .,Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, D-09107 Chemnitz, Germany
| |
Collapse
|
9
|
Synthesis of Ag Loaded ZnO/BiOCl with High Photocatalytic Performance for the Removal of Antibiotic Pollutants. CRYSTALS 2021. [DOI: 10.3390/cryst11080981] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ag@ZnO/BiOCl composites were successfully prepared by in situ precipitation and hydrothermal synthesis and used for the photocatalytic degradation of tetracycline hydrochloride antibiotics. An enhanced photodegradation efficiency was detected after loading Ag nanoparticles, which is attributed to the surface plasmon resonance effect. The optimized sample containing 4% Ag showed 80.4% degradation efficiency in 80 min, which is 2.1 and 1.9 times higher than those of ZnO and ZnO/BiOCl, respectively. The major degrading species involved in the photocatalytic process were detected to be super oxide anions and holes. Based on the obtained results, a possible charge transfer and degradation mechanism has been proposed. This study shows that Ag@ZnO/BiOCl catalyst has a good potential for photodegradation of organic pollutants in water.
Collapse
|