1
|
Mudappathi R, Patton T, Chen H, Yang P, Sun Z, Wang P, Shi CX, Wang J, Liu L. reg-eQTL: Integrating transcription factor effects to unveil regulatory variants. Am J Hum Genet 2025:S0002-9297(25)00015-1. [PMID: 39922197 DOI: 10.1016/j.ajhg.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/10/2025] Open
Abstract
Regulatory single-nucleotide variants (rSNVs) in noncoding regions of the genome play a crucial role in gene transcription by altering transcription factor (TF) binding, chromatin states, and other epigenetic modifications. Existing expression quantitative trait locus (eQTL) methods identify genomic loci associated with gene-expression changes, but they often fall short in pinpointing causal variants. We introduce reg-eQTL, a computational method that incorporates TF effects and interactions with genetic variants into eQTL analysis. This approach provides deeper insights into the regulatory mechanisms, bringing us one step closer to identifying potential causal variants by uncovering how TFs interact with SNVs to influence gene expression. This method defines a trio consisting of a genetic variant, a target gene, and a TF and tests its impact on gene transcription. In comprehensive simulations, reg-eQTL shows improved power of detecting rSNVs with low population frequency, weak effects, and synergetic interaction with TF as compared to traditional eQTL methods. Application of reg-eQTL to GTEx data from lung, brain, and whole-blood tissues uncovered regulatory trios that include eQTLs and increased the number of eQTLs shared across tissue types. Regulatory networks constructed on the basis of these trios reveal intricate gene regulation across tissue types.
Collapse
Affiliation(s)
- Rekha Mudappathi
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Tatiana Patton
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Hai Chen
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Ping Yang
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Zhifu Sun
- Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Panwen Wang
- Department of Quantitative Health Sciences and Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ, USA
| | - Chang-Xin Shi
- Division of Hematology/Oncology, Department of Medicine, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Junwen Wang
- Department of Quantitative Health Sciences and Center for Individualized Medicine, Mayo Clinic, Scottsdale, AZ, USA; Division of Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Hong Kong SAR, China
| | - Li Liu
- College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA; Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA.
| |
Collapse
|
2
|
Antony P, Baby B, Ali A, Vijayan R, Al Jasmi F. Interaction of Glutathione with MMACHC Arginine-Rich Pocket Variants Associated with Cobalamin C Disease: Insights from Molecular Modeling. Biomedicines 2023; 11:3217. [PMID: 38137438 PMCID: PMC10740964 DOI: 10.3390/biomedicines11123217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Methylmalonic aciduria and homocystinuria type C protein (MMACHC) is required by the body to metabolize cobalamin (Cbl). Due to its complex structure and cofactor forms, Cbl passes through an extensive series of absorptive and processing steps before being delivered to mitochondrial methyl malonyl-CoA mutase and cytosolic methionine synthase. Depending on the cofactor attached, MMACHC performs either flavin-dependent reductive decyanation or glutathione (GSH)-dependent dealkylation. The alkyl groups of Cbl have to be removed in the presence of GSH to produce intermediates that can later be converted into active cofactor forms. Pathogenic mutations in the GSH binding site, such as R161Q, R161G, R206P, R206W, and R206Q, have been reported to cause Cbl diseases. The impact of these variations on MMACHC's structure and how it affects GSH and Cbl binding at the molecular level is poorly understood. To better understand the molecular basis of this interaction, mutant structures involving the MMACHC-MeCbl-GSH complex were generated using in silico site-directed point mutations and explored using molecular dynamics (MD) simulations. The results revealed that mutations in the key arginine residues disrupt GSH binding by breaking the interactions and reducing the free energy of binding of GSH. Specifically, variations at position 206 appeared to produce weaker GSH binding. The lowered binding affinity for GSH in the variant structures could impact metabolic pathways involving Cbl and its trafficking.
Collapse
Affiliation(s)
- Priya Antony
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bincy Baby
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Amanat Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- The Big Data Analytics Center, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Fatma Al Jasmi
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Department of Pediatrics, Tawam Hospital, Al Ain P.O. Box 15258, United Arab Emirates
| |
Collapse
|