1
|
Mandal B, Pramanik A, Sarkar D, Haldar A, Das D, Saha R, Mandal D, Bhattacharyya S. Novel Octahedral Nickel (II) Complex with Flexible Piperazinyl Moiety Exhibits Potent Cytotoxic Effect Along with Anti-Migratory and Anti-Metastatic Effect on Human Cancer Cells. ChemMedChem 2024; 19:e202300728. [PMID: 38757641 DOI: 10.1002/cmdc.202300728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Synthesis of non-platinum transition metal complexes with N,O donor chelating ligand for application against pathogenesis of cancer with higher efficacy and selectivity is currently an important field of research. We assessed the anti-cancer effect of a mixed ligand Ni(II) complex on human breast and lung cancer cell lines in this investigation. Mononuclear mixed ligand octahedral Ni(II) complex [NiIIL(NO3)(MeOH)] complex (1), with tri-dentate phenol-based ligand 2,4-dichloro-6-((4-methylpiperazin-1-yl) methyl) phenol (HL) along with methanol and nitrate as ancillary ligand was prepared. Piperazine moiety of the ligand exists as boat conformation in this complex as revealed from single crystal X-ray study. UV-visible spectrum of complex (1) exhibits three distinct d-d bands due to spin-allowed 3 A2 g→3T1 g (P), 3 A2 g→3T1 g(F) and 3 A2 g→3T2 g(F) transitions as expected in an octahedral d8 system. Our study revealed that Complex (1) induces apoptotic cell death in mouse and human cancer cells such as mcf-7, A549 and MDA-MB-231 through transactivation of p53 and its pro-apoptotic downstream targets in a dose dependent manner. Furthermore, complex (1) was able to slow the migratory rate of MDA-MB-231 cells' in vitro as well as epithelia -mesenchymal transition (EMT), the key step for metastatic transition and malignancy. Over all our results suggest complex (1) as a potential agent in anti-tumor treatment regimen showing both cytotoxic and anti-metastatic activity against malignant neoplasia.
Collapse
Affiliation(s)
- Bikramaditya Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge City, Manauli, -140306, India
| | - Anik Pramanik
- Immunobiology and translational medicine laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal, India
| | - Debanjan Sarkar
- Immunobiology and translational medicine laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal, India
| | - Anwesha Haldar
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, West Bengal, India
| | - Dona Das
- Immunobiology and translational medicine laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal, India
| | - Rajat Saha
- Department of Chemistry, Kazi Nazrul University, Asansol, Paschim Bardhaman, -713340, West Bengal, India
| | - Debdas Mandal
- Department of Chemistry, Sidho-Kanho-Birsha University, Purulia, 723104, West Bengal, India
| | - Sankar Bhattacharyya
- Immunobiology and translational medicine laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, West Bengal, India
| |
Collapse
|
2
|
Pal K, Barman S, Bag J. Enzymatic Substrate Inhibition in Metal Free Catecholase Activity. Chem Biodivers 2023; 20:e202201166. [PMID: 36762430 DOI: 10.1002/cbdv.202201166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
The catecholase activities were routinely modeled using transition metal complexes as catalyst and in some case basic pH were used as a reaction condition. In this article, the catalytic aerobic oxidation of proxy substrate 3,5-di-tert-butylcatechol (DTBC) in methanol using triethylamine/diethylamine as catalyst was demonstrated as a functional mimic of catecholase activity. The kinetic manifestation of DTBC oxidation was explained as enzymatic substrate inhibition pattern in Michaelis-Menten kinetic model. The mechanistic insight of the aerobic oxidation of DTBC was further validated using various spectroscopic techniques and DFT methods.
Collapse
Affiliation(s)
- Kuntal Pal
- Department of Chemistry, University of Calcutta, 92 A.P.C Road, Kolkata, 700009, India
| | - Souvik Barman
- Department of Chemistry, University of Calcutta, 92 A.P.C Road, Kolkata, 700009, India
| | - Jayanta Bag
- Department of Chemistry, University of Calcutta, 92 A.P.C Road, Kolkata, 700009, India
| |
Collapse
|