1
|
Xue F, Zhang J, Ma Z, Wang Z. Copper Dispersed Covalent Organic Framework for Azide-Alkyne Cycloaddition and Fast Synthesis of Rufinamide in Water. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307796. [PMID: 38185802 DOI: 10.1002/smll.202307796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/27/2023] [Indexed: 01/09/2024]
Abstract
A crystalline porous bipyridine-based Bpy-COF with a high BET surface area (1864 m2 g-1) and uniform mesopore (4.0 nm) is successfully synthesized from 1,3,5-tris-(4'-formyl-biphenyl-4-yl)triazine and 5,5'-diamino-2,2'-bipyridine via a solvothermal method. After Cu(I)-loading, the resultant Cu(I)-Bpy-COF remained the ordered porous structure with evenly distributed Cu(I) ions at a single-atom level. Using Cu(I)-Bpy-COF as a heterogeneous catalyst, high conversions for cycloaddition reactions are achieved within a short time (40 min) at 25 °C in water medium. Moreover, Cu(I)-Bpy-COF proves to be applicable for aromatic and aliphatic azides and alkynes bearing various substituents such as ester, hydroxyl, amido, pyridyl, thienyl, bulky triphenylamine, fluorine, and trifluoromethyl groups. The high conversions remain almost constant after five cycles. Additionally, the antiepileptic drug (rufinamide) is successfully prepared by a simple one-step reaction using Cu(I)-Bpy-COF, proving its practical feasibility for pharmaceutical synthesis.
Collapse
Affiliation(s)
- Fei Xue
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| | - Jun Zhang
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| | - Zhongcheng Ma
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| | - Zhonggang Wang
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| |
Collapse
|
2
|
Ma Y, Lin W, Ruan Y, Lu H, Fan S, Chen D, Huang Y, Zhang T, Pi J, Xu JF. Advances of Cobalt Nanomaterials as Anti-Infection Agents, Drug Carriers, and Immunomodulators for Potential Infectious Disease Treatment. Pharmaceutics 2022; 14:pharmaceutics14112351. [PMID: 36365168 PMCID: PMC9696703 DOI: 10.3390/pharmaceutics14112351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Infectious diseases remain the most serious public health issue, which requires the development of more effective strategies for infectious control. As a kind of ultra-trace element, cobalt is essential to the metabolism of different organisms. In recent decades, nanotechnology has attracted increasing attention worldwide due to its wide application in different areas, including medicine. Based on the important biological roles of cobalt, cobalt nanomaterials have recently been widely developed for their attractive biomedical applications. With advantages such as low costs in preparation, hypotoxicity, photothermal conversion abilities, and high drug loading ability, cobalt nanomaterials have been proven to show promising potential in anticancer and anti-infection treatment. In this review, we summarize the characters of cobalt nanomaterials, followed by the advances in their biological functions and mechanisms. More importantly, we emphatically discuss the potential of cobalt nanomaterials as anti-infectious agents, drug carriers, and immunomodulators for anti-infection treatments, which might be helpful to facilitate progress in future research of anti-infection therapy.
Collapse
Affiliation(s)
- Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Hongmei Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Dongsheng Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Yuhe Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
| | - Tangxin Zhang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan 523808, China
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan 523808, China
- Correspondence: (J.P.); (J.-F.X.)
| |
Collapse
|