Giri S, Nandi C, Nampi P, Parmar RM, Ghosh S. Polyhedral and Macropolyhedral Metal-Rich Cobaltaboranes: A 25-Vertex Hourglass-Shaped Cluster.
Inorg Chem 2024;
63:11639-11648. [PMID:
38865132 DOI:
10.1021/acs.inorgchem.4c00955]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
In an effort to break the single-cage 16-vertex supraicosahedral barrier, we have explored the reaction of [Cp*CoCl2], 1 with [LiBH4·THF], followed by thermolysis with [BH3·SMe2] [Cp* = η5-C5Me5]. Although our objective to synthesize a high-nuclearity single-cage cluster was not achieved, we have isolated a 25-vertex macropolyhedral cluster [(Cp*Co)5Co2B18H17(CH3)S] (2). Cluster 2 is an exceptional fused hourglass-shaped macropolyhedral cluster composing two icosahedral cores ([Co3B9] and [Co4B8]) and three tetrahedral cores [Co2B2]. Although the fusion in cluster 2 is very complex, it follows Mingos fusion formalism, leading to an attractive hourglass-shaped cluster. Through subtle changes in reaction conditions, two new cobaltaborane clusters, nido-4,5,7-[(Cp*Co)3B7H11] (3) and nido-2,9-[(Cp*Co)2B8H12] (4), have been isolated. The observed core geometries of clusters 3 and 4 are similar to the parent deltahedra [B10H14] with (n + 2) SEP (SEP = skeletal electron pair, n = no. of vertices). All the synthesized cobaltaboranes have been characterized in solution by ESI-mass, nuclear magnetic resonance spectroscopy, infrared spectroscopy and structurally solved by single-crystal X-ray diffraction analysis.
Collapse