On the ability of pnicogen atoms to engage in both σ and π-hole complexes. Heterodimers of ZF
2C
6H
5 (Z = P, As, Sb, Bi) and NH
3.
J Mol Model 2019;
25:152. [PMID:
31069527 DOI:
10.1007/s00894-019-4031-6]
[Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/07/2019] [Indexed: 01/11/2023]
Abstract
When bound to a pair of F atoms and a phenyl ring, a pyramidal pnicogen (Z) atom can form a pnicogen bond wherein an NH3 base lies opposite one F atom. In addition to this σ-hole complex, the ZF2C6H5 molecule can distort in such a way that the NH3 approaches on the opposite side to the lone pair on Z, where there is a so-called π-hole. The interaction energies of these π-hole dimers are roughly 30 kcal/mol, much larger than the equivalent quantities for the σ-hole complexes, which are only 4-13 kcal/mol. On the other hand, this large interaction energy is countered by the considerable deformation energy required for the Lewis acid to adopt the geometry necessary to form the π-hole complex. The overall energetics of the complexation reaction are thus more exothermic for the σ-hole dimers than for the π-hole dimers.
Collapse