1
|
Alowasheeir A, Nara H, Eguchi M, Yamauchi Y. Ni–Fe nanoframes via a unique structural formation induced by sonochemical etching. Chem Commun (Camb) 2022; 58:12588-12591. [DOI: 10.1039/d2cc03253h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ni–Fe nanoframe exhibits unique structural merits including 3D open structure and high surface area, enhancing electrochemical properties for oxygen-evolution reaction (OER).
Collapse
Affiliation(s)
- Azhar Alowasheeir
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Hiroki Nara
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Miharu Eguchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space-Tectonics Project and International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
2
|
Heczko M, Reczyński M, Näther C, Nowicka B. Tuning of magnetic properties of the 2D CN-bridged Ni II-Nb IV framework by incorporation of guest cations of alkali and alkaline earth metals. Dalton Trans 2021; 50:7537-7544. [PMID: 33871526 DOI: 10.1039/d1dt00367d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The reaction between [Ni(cyclam)]2+ (cyclam = 1,4,8,11-tetraazacyclotetradecane) and [Nb(CN)8]4- in concentrated water solutions of different s-block metal salts leads to the formation of 2-dimensional honeycomb-like coordination networks of the formula Mx[Ni(cyclam)]3[Nb(CN)8]2·nH2O (x = 2: M = Li+, Na+; x = 1: M = Mg2+, Ca2+, Sr2+, Ba2+). The CN-bridged Ni-Nb coordination layers are intersected by channels filled with crystallisation water molecules and guest mono- or di-valent metal cations, which compensate the negative charge of the framework. The structural details and crystal symmetry vary between the networks, depending on the arrangement of the water molecules and the intermolecular interactions enforced by the guest cations. All compounds show long range magnetic order arising from superexchange interactions between paramagnetic NiII (s = 1) and NbIV (s = 1/2) centres through CN-bridges within the layers and weaker inter-layer interactions mediated by H-bonds. The ordering temperature as well as the coercive field of the magnetic hysteresis can be tuned by the type of guest cation, with the highest values achieved for Mg2+ and the lowest for Na+.
Collapse
Affiliation(s)
- Michał Heczko
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Mateusz Reczyński
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Christian Näther
- Institut für Anorganische Chemie, Christian-Albrechts-Universität, Max-Eyth.-Str. 2, 24118 Kiel, Germany
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
4
|
Zhao D, Lu Y, Ma D. Effects of Structure and Constituent of Prussian Blue Analogs on Their Application in Oxygen Evolution Reaction. Molecules 2020; 25:E2304. [PMID: 32422929 PMCID: PMC7288040 DOI: 10.3390/molecules25102304] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 11/16/2022] Open
Abstract
The importance of advanced energy-conversion devices such as water electrolysis has manifested dramatically over the past few decades because it is the current mainstay for the generation of green energy. Anodic oxygen evolution reaction (OER) in water splitting is one of the biggest obstacles because of its extremely high kinetic barrier. Conventional OER catalysts are mainly noble-metal oxides represented by IrO2 and RuO2, but these compounds tend to have poor sustainability. The attention on Prussian blue (PB) and its analogs (PBA) in the field of energy conversion systems was concentrated on their open-framework structure, as well as its varied composition comprised of Earth-abundant elements. The unique electronic structure of PBA enables its promising catalytic potential, and it can also be converted into many other talented compounds or structures as a precursor. This undoubtedly provides a new approach for the design of green OER catalysts. This article reviews the recent progress of the application of PBA and its derivatives in OER based on in-depth studies of characterization techniques. The structural design, synthetic strategy, and enhanced electrochemical properties are summarized to provide an outlook for its application in the field of OER. Moreover, due to the similarity of the reaction process of photo-driven electrolysis of water and the former one, the application of PBA in photoelectrolysis is also discussed.
Collapse
Affiliation(s)
- Dongni Zhao
- School of Science, Beijing Technology and Business University, Beijing 100048, China;
| | - Yuezhen Lu
- Department of Engineering, Lancaster University, Lancaster LA1 4YR, UK;
| | - Dongge Ma
- School of Science, Beijing Technology and Business University, Beijing 100048, China;
| |
Collapse
|
5
|
Hayashi H, Aoki S, Takaishi M, Sato Y, Abe H. An XAFS study of Cs adsorption by the precipitation bands of Mn-Fe-based Prussian blue analogues spontaneously formed in agarose gel. Phys Chem Chem Phys 2019; 21:22553-22562. [PMID: 31588936 DOI: 10.1039/c9cp03661j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The adsorption of Cs+ ions by the precipitation bands of a Mn-Fe based Prussian blue analogue (Mn-Fe PBA) that form spontaneously in agarose gel was investigated by X-ray absorption fine structure spectroscopy coupled with scanning electron microscopy (SEM) and X-ray fluorescence (XRF) distribution analysis. Two gel samples were prepared by contacting a gel containing 0.05 M [Fe(CN)6]3- and 2.3 mass% agarose with a 0.50 M MnSO4 solution, into one of which a 0.10 M CsCl solution was introduced. The SEM images and the XRF intensity distributions reveal that Mn-Fe PBA forms cubic crystallites (approx. 3 × 3 × 3 μm in size) in the gels that trap Cs+ ions with considerably high affinity. Cs L3-edge and Mn K-edge X-ray absorption near-edge structure (XANES) spectra, which were analyzed with the aid of FEFF simulations, strongly suggest that Cs adsorption occurs at relatively large defect sites close to the sub-cube faces in the PBA. This suggestion is supported by Cs L3-edge extended X-ray absorption fine structure spectroscopy, which suggested that the first and second coordination shells around the Cs+ ions are at a Cs-O distance of 0.35 ± 0.02 nm and a Cs-N distance of 0.43 ± 0.01 nm, respectively, with coordination numbers of 1.5 ± 0.5 and 3.0 ± 0.5. The Mn K-edge XANES data also suggest that H2O molecules, which initially occupy many cubic centers in the Mn-Fe PBAs, are mostly displaced during Cs adsorption. These findings provide valuable insight toward fully understanding Cs adsorption by Mn-Fe PBA.
Collapse
Affiliation(s)
- Hisashi Hayashi
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan.
| | - Saya Aoki
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan.
| | - Mao Takaishi
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan.
| | - Yui Sato
- Department of Chemical and Biological Sciences, Faculty of Science, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan.
| | - Hitoshi Abe
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan and Department of Materials Structure Science, School of High Energy Accelerator Science, SOKENDAI (the Graduate University for Advanced Studies), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
6
|
Azhar A, Li Y, Cai Z, Zakaria MB, Masud MK, Hossain MSA, Kim J, Zhang W, Na J, Yamauchi Y, Hu M. Nanoarchitectonics: A New Materials Horizon for Prussian Blue and Its Analogues. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180368] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Alowasheeir Azhar
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yucen Li
- School of Physics and Materials Science, East China Normal University, Shanghai 200241, P. R. China
| | - Zexing Cai
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Mohamed Barakat Zakaria
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Mostafa Kamal Masud
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Md. Shahriar A. Hossain
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Mechanical & Mining Engineering, Faculty of Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jeonghun Kim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Wei Zhang
- School of Physics and Materials Science, East China Normal University, Shanghai 200241, P. R. China
| | - Jongbeom Na
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemical Engineering, Architecture and Information Technology (EAIT), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Plant and Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, Korea
| | - Ming Hu
- School of Physics and Materials Science, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|