1
|
Mojica R, Avila Y, Morgado P, Vázquez MC, Rodríguez-Hernández J, Crespo PM, Reguera E. Impact of metal exchange on the electronic structure and optical properties of isostructural octa-coordinated Mo IV/Cd II and W IV/Cd II polynuclear cyanide polymers. Dalton Trans 2024; 53:15350-15358. [PMID: 39225705 DOI: 10.1039/d4dt01694g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The electronic structure and related electronic properties of two novel isostructural octacyanometallates Cd2(H2O)4[MoIV(CN)8]·2H2O and Cd2(H2O)4[WIV(CN)8]·2H2O are described from a combined experimental and computational approach. The impact that the octacoordinated heavy metals W and Mo have on the electronic structure and optical response of isostructural materials whose electronic properties strongly depend on the crystal structure is discussed. It is found that the effect of the polarization power of the metal centers, combined with the ligand field of cyanos, produces considerable changes in the electronic structure and, consequently, in the band gap energy. The ab initio calculations, which were performed with generalized gradient PBE and hybrid HSE06 density functionals, accurately reproduce the electronic structure of [Mo(CN)8]4- and [W(CN)8]4- building units, revealing that the electronic transitions associated with the band gap energy have an origin in the charge transfer phenomena of metal to ligand nature. Moreover, the optical band gap transitions have an allowed indirect behavior in the Γ → M → D direction which is associated with the (x2 - y2) → π* transition. The allowed direct and indirect (experimental and theoretical) band gap energies together with the exciton effective masses are reported.
Collapse
Affiliation(s)
- R Mojica
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, 11500, Miguel Hidalgo, Ciudad de México, Mexico.
| | - Y Avila
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, 11500, Miguel Hidalgo, Ciudad de México, Mexico.
| | - P Morgado
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, 11500, Miguel Hidalgo, Ciudad de México, Mexico.
| | - M C Vázquez
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, 11500, Miguel Hidalgo, Ciudad de México, Mexico.
| | | | - P M Crespo
- Universidad Tecnológica de Izúcar de Matamoros, 74420, Izúcar de Matamoros, Puebla, Mexico
| | - E Reguera
- Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional, 11500, Miguel Hidalgo, Ciudad de México, Mexico.
| |
Collapse
|
2
|
Chorazy S, Zakrzewski JJ, Magott M, Korzeniak T, Nowicka B, Pinkowicz D, Podgajny R, Sieklucka B. Octacyanidometallates for multifunctional molecule-based materials. Chem Soc Rev 2020; 49:5945-6001. [PMID: 32685956 DOI: 10.1039/d0cs00067a] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Octacyanidometallates have been successfully employed in the design of heterometallic coordination systems offering a spectacular range of desired physical properties with great potential for technological applications. The [M(CN)8]n- ions comprise a series of complexes of heavy transition metals in high oxidation states, including NbIV, MoIV/V, WIV/V, and ReV. Since the discovery of the pioneering bimetallic {MnII4[MIV(CN)8]2} and {MnII9[MV(CN)8]6} (M = Mo, W) molecules in 2000, octacyanidometallates were fruitfully explored as precursors for the construction of diverse d-d or d-f coordination clusters and frameworks which could be obtained in the crystalline form under mild synthetic conditions. The primary interest in [M(CN)8]n--based networks was focused on their application as molecule-based magnets exhibiting long-range magnetic ordering resulting from the efficient intermetallic exchange coupling mediated by cyanido bridges. However, in the last few years, octacyanidometallate-based materials proved to offer varied and remarkable functionalities, becoming efficient building blocks for the construction of molecular nanomagnets, magnetic coolers, spin transition materials, photomagnets, solvato-magnetic materials, including molecular magnetic sponges, luminescent magnets, chiral magnets and photomagnets, SHG-active magnetic materials, pyro- and ferroelectrics, ionic conductors as well as electrochemical containers. Some of these materials can be processed into the nanoscale opening the route towards the development of magnetic, optical and electronic devices. In this review, we summarise all important achievements in the field of octacyanidometallate-based functional materials, with the particular attention to the most recent advances, and present a thorough discussion on non-trivial structural and electronic features of [M(CN)8]n- ions, which are purposefully explored to introduce desired physical properties and their combinations towards advanced multifunctional materials.
Collapse
Affiliation(s)
- Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Jakub J Zakrzewski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Michał Magott
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Tomasz Korzeniak
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Robert Podgajny
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Barbara Sieklucka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
3
|
Magott M, Sarewicz M, Buda S, Pinkowicz D. Heterotrimetallic Cyanide-Bridged 3d-4d-5d Frameworks Based on a Photomagnetic Secondary Building Unit. Inorg Chem 2020; 59:8925-8934. [PMID: 32510938 PMCID: PMC7588039 DOI: 10.1021/acs.inorgchem.0c00737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The rational design
of coordination frameworks combining more than two different metal
ions using a self-assembly approach is challenging because it rarely
offers sufficient control over the building blocks at the actual self-assembly
stage. In this work, we present a successful two-step strategy toward
heterotrimetallic coordination frameworks by employing a new bimetallic
[(NC)7MoIV-CN-PtIV(NH3)4-NC-MoIV(CN)7]4– secondary building unit (SBU). This anionic moiety has been isolated
and characterized as a simple salt with an organic dppipH22+ cation (dppipH2)2[(NC)7MoIV-CN-PtIV(NH3)4-NC-MoIV(CN)7]·15H2O (1)
(dppip = 1,4-di(4-pyridinyl)piperazine). The salt presents a
second-order phase transition related to cation conformational change
around 250 K and a photomagnetic effect after irradiation with 450
nm light at 10 K. When combined with aqueous solutions of MnII or CuII complexes, it forms either a one-dimensional
chain [MnII(dpop)][MnII(dpop)(H2O)][(NC)7MoIV-CN-PtIV(NH3)4-NC-MoIV(CN)7]·36H2O (2) (dpop = 2,13-dimethyl-3,6,9,12,18-pentaazabicyclo-[12.3.1]octadeca-1(18),2,12,14,16-pentaene)
or a photomagnetic two-dimensional honeycomb network [CuII(cyclam)]2[(NC)7MoIV-CN-PtIV(NH3)4-NC-MoIV(CN)7]·40.89H2O (3) (cyclam = 1,4,8,11-tetraazacyclotetradecane),
both characterized by very large cavities in their structure filled
with solvent molecules. Both 2 and 3 incorporate
three different transition-metal ions and constitute a new family
of 3d-4d-5d coordination frameworks. Moreover, compound 3 inherits the photomagnetic properties of the MoPtMo SBU. A photomagnetic secondary building unit
(SBU) MoIVPtIVMoIV was employed to
design and synthesize new heterotrimetallic coordination polymers
in a two-step approach, resulting in MnII2MoIV2PtIV coordination chains and CuII2MoIV2PtIV honeycomb
coordination layers.
Collapse
Affiliation(s)
- Michał Magott
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Marcin Sarewicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Molecular Biophysics, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Szymon Buda
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Dawid Pinkowicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
4
|
Reczyński M, Heczko M, Kozieł M, Ohkoshi SI, Sieklucka B, Nowicka B. Proton-Conducting Humidity-Sensitive NiII–NbIV Magnetic Coordination Network. Inorg Chem 2019; 58:15812-15823. [DOI: 10.1021/acs.inorgchem.9b02141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mateusz Reczyński
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Michał Heczko
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Marcin Kozieł
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Shin-ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Barbara Sieklucka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| |
Collapse
|
5
|
Qian J, Yoshikawa H, Hu J, Humphrey MG, Zhang J, Awaga K, Zhang C. Auxiliary ligand-induced structural diversities of octacyanometalate-based heterobimetallic coordination polymers towards diverse magnetic properties. Dalton Trans 2019; 48:7666-7676. [PMID: 31062810 DOI: 10.1039/c9dt00654k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three octacyanometalate-based bimetallic coordination polymers (CPs), {[μ4-MV(CN)8][Co(DMF)4]2(ClO4)}n (M = W CP-1, Mo CP-2) and {[μ4-WIV(CN)8]Co2(azpy)4}n CP-3, were synthesized in the absence (for CPs 1 and 2) or presence (for CP-3) of auxiliary ligand 4,4'-azopyridine (azpy), respectively. CPs 1 and 2 exhibit the same three-dimensional (3D) polymeric cation frameworks with [ClO4]- as the counterions, while CP-3 displays a porous 3D framework in an unusual 2-nodal (4,6)-connected 4,6T155 topology with point symbol as {42·64}{46·64·7·84}2. Notably is that octacyanometalate [WV(CN)8]3- has been reduced into [WIV(CN)8]4- during the synthetic process of CP-3. The magnetic investigations indicate that CP-1 exhibits the typical ferromagnetic property due to the ferromagnetic coupling between W(v) and Co(ii) spin centers, while CP-3 displays the weak ferromagnetic interaction at low temperature, which is consistent with the valence change of W center in CP-3.
Collapse
Affiliation(s)
- Jun Qian
- China-Australia Joint Research Center for Functional Molecular Materials, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | | | | | | | | | | | | |
Collapse
|