1
|
Mou M, Patel A, Mallick S, Thapaliya BP, Paranthaman MP, Mugumya JH, Rasche ML, Gupta RB, Saleh S, Kothe S, Baral E, Pandey GP, Lopez H, Jiang M. Scalable Advanced Li(Ni 0.8Co 0.1Mn 0.1)O 2 Cathode Materials from a Slug Flow Continuous Process. ACS OMEGA 2022; 7:42408-42417. [PMID: 36440126 PMCID: PMC9685780 DOI: 10.1021/acsomega.2c05521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Li[Ni0.8Co0.1Mn0.1]O2 (LNCMO811) is the most studied cathode material for next-generation lithium-ion batteries with high energy density. However, available synthesis methods are time-consuming and complex, restricting their mass production. A scalable manufacturing process for producing NCM811 hydroxide precursors is vital for commercialization of the material. In this work, a three-phase slug flow reactor, which has been demonstrated for its ease of scale-up, better synthetic control, and excellent uniform mixing, was developed to control the initial stage of the coprecipitation of NCM811 hydroxide. Furthermore, an equilibrium model was established to predict the yield and composition of the final product. The homogeneous slurry from the slug flow system was obtained and then transferred into a ripening vessel for the necessary ripening process. Finally, the lithium-nickel-cobalt-manganese oxide was obtained through the calcination of the slug flow-derived precursor with lithium hydroxide, having a tap density of 1.3 g cm-3 with a well-layered structure. As-synthesized LNCMO811 shows a high specific capacity of 169.5 mAh g-1 at a current rate of 0.1C and a long cycling stability of 1000 cycling with good capacity retention. This demonstration provides a pathway toward scaling up the cathode synthesis process for large-scale battery applications.
Collapse
Affiliation(s)
- Mingyao Mou
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23219, United States
| | - Arjun Patel
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23219, United States
| | - Sourav Mallick
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23219, United States
| | - Bishnu P. Thapaliya
- Chemical
Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | | | - Jethrine H. Mugumya
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23219, United States
| | - Michael L. Rasche
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23219, United States
| | - Ram B. Gupta
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23219, United States
| | - Selma Saleh
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23219, United States
| | - Sophie Kothe
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23219, United States
| | - Ena Baral
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23219, United States
| | - Gaind P. Pandey
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23219, United States
| | - Herman Lopez
- Zenlabs
Energy Inc., Fremont, California94538, United States
| | - Mo Jiang
- Department
of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23219, United States
| |
Collapse
|
2
|
Kwon S, Lakerveld R. Impact of Cooling Profile on Batch Emulsion Solution Crystallization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Soojin Kwon
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Richard Lakerveld
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
3
|
Tacsi K, Stoffán G, Pusztai É, Nagy B, Domokos A, Szilágyi B, Nagy ZK, Marosi G, Pataki H. Implementation of sonicated continuous plug flow crystallization technology for processing of acetylsalicylic acid reaction mixture. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Yuan M, Wang J, Huang X, Wang T, Wang N, Zhou L, Hao H. Ultrasound‐assisted slug‐flow tubular crystallization for preparation of fine ibuprofen crystals. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202100574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mingpu Yuan
- School of Chemical Engineering and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Jingkang Wang
- School of Chemical Engineering and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering 92 Weijin Road Tianjin 300072 China
| | - Xin Huang
- School of Chemical Engineering and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering 92 Weijin Road Tianjin 300072 China
- Zhejiang Institute of Tianjin University Ningbo 315201 China Zhejiang
| | - Ting Wang
- School of Chemical Engineering and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering 92 Weijin Road Tianjin 300072 China
- Zhejiang Institute of Tianjin University Ningbo 315201 China Zhejiang
| | - Na Wang
- School of Chemical Engineering and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering 92 Weijin Road Tianjin 300072 China
- Zhejiang Institute of Tianjin University Ningbo 315201 China Zhejiang
| | - Lina Zhou
- School of Chemical Engineering and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering 92 Weijin Road Tianjin 300072 China
| | - Hongxun Hao
- School of Chemical Engineering and Technology Tianjin University 92 Weijin Road Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering 92 Weijin Road Tianjin 300072 China
- School of Chemical Engineering and Technology Hainan University No.58 Renmin Avenue Haikou 570208 China
| |
Collapse
|
6
|
Termühlen M, Etmanski MM, Kryschewski I, Kufner AC, Schembecker G, Wohlgemuth K. Continuous slug flow crystallization: Impact of design and operating parameters on product quality. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Orehek J, Teslić D, Likozar B. Continuous Crystallization Processes in Pharmaceutical Manufacturing: A Review. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00398] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jaka Orehek
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
- Lek d. d., Sandoz, a Novartis division, Verovškova 57, 1526 Ljubljana, Slovenia
| | - Dušan Teslić
- Lek d. d., Sandoz, a Novartis division, Verovškova 57, 1526 Ljubljana, Slovenia
| | - Blaž Likozar
- National Institute of Chemistry, Hajdrihova 19, 1001 Ljubljana, Slovenia
| |
Collapse
|