Nasreen F, Anwar AW, Majeed A, Ahmad MA, Ilyas U, Ahmad F. High performance and remarkable cyclic stability of a nanostructured RGO-CNT-WO
3 supercapacitor electrode.
RSC Adv 2022;
12:11293-11302. [PMID:
35425034 PMCID:
PMC8996255 DOI:
10.1039/d1ra08413e]
[Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/04/2022] [Indexed: 11/21/2022] Open
Abstract
One of the most pressing concerns in today's power networks is ensuring that consumers (both home and industrial) have access to efficient and long-lasting economic energy. Due to improved power accessibility and high specific capacitance without deterioration over long working times, supercapacitor-based energy storage systems can be a viable solution to this problem. So, here, tungsten trioxide (WO3) nanocomposites containing reduced graphene oxide and carbon nanotubes i.e. (RGO-WO3), (CNT-WO3), and (RGO-CNT-WO3), as well as pure WO3 nanostructures as electrode materials, were synthesized using a simple hydrothermal process. The monoclinic phase of WO3 with high diffraction peaks is visible in X-ray diffraction analysis, indicating good crystallinity of all electrode materials. Nanoflowers of WO3 were well-decorated on the RGO/CNTs conductive network in SEM micrographs. In a three-electrode system, the specific capacitance of the RGO-CNT-WO3 electrode is 691.38 F g-1 at 5 mV s-1 and 633.3 F g-1 at 2 A g-1, which is significantly higher than that of pure WO3 and other binary electrodes. Furthermore, at 2 A g-1, it achieves a coulombic efficiency of 98.4%. After 5000 cycles, RGO-CNT-WO3 retains 89.09% of its capacitance at 1000 mV s-1, indicating a promising rate capability and good cycling stability performance.
Collapse