1
|
Ma S, Pan X, Gan J, Guo X, He J, Hu H, Wang Y, Ning S, Zhi H. DNA methylation heterogeneity attributable to a complex tumor immune microenvironment prompts prognostic risk in glioma. Epigenetics 2024; 19:2318506. [PMID: 38439715 PMCID: PMC10936651 DOI: 10.1080/15592294.2024.2318506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
Gliomas are malignant tumours of the human nervous system with different World Health Organization (WHO) classifications, glioblastoma (GBM) with higher grade and are more malignant than lower-grade glioma (LGG). To dissect how the DNA methylation heterogeneity in gliomas is influenced by the complex cellular composition of the tumour immune microenvironment, we first compared the DNA methylation profiles of purified human immune cells and bulk glioma tissue, stratifying three tumour immune microenvironmental subtypes for GBM and LGG samples from The Cancer Genome Atlas (TCGA). We found that more intermediate methylation sites were enriched in glioma tumour tissues, and used the Proportion of sites with Intermediate Methylation (PIM) to compare intertumoral DNA methylation heterogeneity. A larger PIM score reflected stronger DNA methylation heterogeneity. Enhanced DNA methylation heterogeneity was associated with stronger immune cell infiltration, better survival rates, and slower tumour progression in glioma patients. We then created a Cell-type-associated DNA Methylation Heterogeneity Contribution (CMHC) score to explore the impact of different immune cell types on heterogeneous CpG site (CpGct) in glioma tissues. We identified eight prognosis-related CpGct to construct a risk score: the Cell-type-associated DNA Methylation Heterogeneity Risk (CMHR) score. CMHR was positively correlated with cytotoxic T-lymphocyte infiltration (CTL), and showed better predictive performance for IDH status (AUC = 0.96) and glioma histological phenotype (AUC = 0.81). Furthermore, DNA methylation alterations of eight CpGct might be related to drug treatments of gliomas. In conclusion, we indicated that DNA methylation heterogeneity is associated with a complex tumour immune microenvironment, glioma phenotype, and patient's prognosis.
Collapse
Affiliation(s)
- Shuangyue Ma
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xu Pan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jing Gan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiaxin Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jiaheng He
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Haoyu Hu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yuncong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hui Zhi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| |
Collapse
|
2
|
Reihanian Z, Abbaspour E, Zaresharifi N, Karimzadhagh S, Mahmoudalinejad M, Sourati A, Farzin M, EslamiKenarsari H. Impact of Age and Gender on Survival of Glioblastoma Multiforme Patients: A Multicenter Retrospective Study. Cancer Rep (Hoboken) 2024; 7:e70050. [PMID: 39506810 PMCID: PMC11541054 DOI: 10.1002/cnr2.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/01/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) poses a significant health challenge as the most common primary malignancy of the adult central nervous system. Gender- and age-related differences in GBM influence prognosis and treatment complexities. This multicenter retrospective study explores gender and age disparities in GBM patients, investigating their impact on occurrence and survival outcomes. METHODS This multicenter retrospective study involved GBM patients treated in Guilan Province, Iran. Patients' data, including age, gender, tumor location, and histopathological diagnosis date, was collected from medical records. RESULTS In a cohort of 164 GBM patients, the average age was 54.34 ± 14.16 years, with a higher prevalence among men (59.8%) and patients aged ≤ 60 years (64.6%). The tumor sites exhibited overlapping features in 68% of cases, with the frontal and temporal lobes being the most common specific locations. The mean survival was 12.88 ± 14.14 months, one-year survival of 45%, with women showing significantly higher one-year survival (60% vs. 40%) and longer mean survival (16.14 ± 17.35 vs. 10.75 ± 11.15 months). Furthermore, Patients ≤ 60 years had significantly higher one-year survival (75% vs. 35%). In subgroup analysis, women had significantly higher survival rates in patients ≤ 60 years. However, among patients over 60, women exhibited a more pronounced decline in survival rates, with no statistically significant difference between men and women in this age group. CONCLUSION This study highlights that both age and gender significantly affect GBM survival outcomes. Younger patients, particularly women, exhibited better survival rates, while older patients, especially women, showed poorer outcomes. These findings suggest the need to stratify treatment approaches by both age and gender to optimize care and improve survival in GBM patients. Further research is recommended to explore these associations.
Collapse
Affiliation(s)
- Zoheir Reihanian
- Department of Neurosurgery, Poursina HospitalGuilan University of Medical SciencesRashtIran
| | - Elahe Abbaspour
- Clinical Research Development Unit of Poursina HospitalGuilan University of Medical SciencesRashtIran
| | - Nooshin Zaresharifi
- Department of Pathology, Faculty of MedicineGuilan University of Medical SciencesRashtIran
| | - Sahand Karimzadhagh
- Clinical Research Development Unit of Poursina HospitalGuilan University of Medical SciencesRashtIran
- Department of Internal Medicine, School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Maral Mahmoudalinejad
- Clinical Research Development Unit of Poursina HospitalGuilan University of Medical SciencesRashtIran
| | - Ainaz Sourati
- Department of Radiation OncologyGuilan University of Medical SciencesRashtIran
| | - Mohaya Farzin
- Department of Physiology, Razi Clinical Research Development CenterGuilan University of Medical SciencesRashtIran
| | | |
Collapse
|
3
|
Doms H, Lambert P, Legrand C. Flexible joint model for time-to-event and non-Gaussian longitudinal outcomes. Stat Methods Med Res 2024:9622802241269010. [PMID: 39248224 DOI: 10.1177/09622802241269010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
In medical studies, repeated measurements of biomarkers and time-to-event data are often collected during the follow-up period. To assess the association between these two outcomes, joint models are frequently considered. The most common approach uses a linear mixed model for the longitudinal part and a proportional hazard model for the survival part. The latter assumes a linear relationship between the survival covariates and the log hazard. In this work, we propose an extension allowing the inclusion of nonlinear covariate effects in the survival model using Bayesian penalized B-splines. Our model is valid for non-Gaussian longitudinal responses since we use a generalized linear mixed model for the longitudinal process. A simulation study shows that our method gives good statistical performance and highlights the importance of taking into account the possible nonlinear effects of certain survival covariates. Data from patients with a first progression of glioblastoma are analysed to illustrate the method.
Collapse
Affiliation(s)
- Hortense Doms
- Institut de Statistique, Biostatistique et Sciences Actuarielles, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Philippe Lambert
- Institut de Statistique, Biostatistique et Sciences Actuarielles, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- Institut de Mathématiques, Université de Liège, Liège, Belgium
| | - Catherine Legrand
- Institut de Statistique, Biostatistique et Sciences Actuarielles, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Wang L, Han Y, Gu Z, Han M, Hu C, Li Z. Boosting the therapy of glutamine-addiction glioblastoma by combining glutamine metabolism therapy with photo-enhanced chemodynamic therapy. Biomater Sci 2023; 11:6252-6266. [PMID: 37534821 DOI: 10.1039/d3bm00897e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The complete treatment of high grade invasive glioblastoma (GBM) remains to be a great challenge, and it is of great importance to develop innovative therapeutic approaches. Herein, we found that GBM derived from U87 MG cells is a glutamine-addiction tumor, and jointly using glutamine-starvation therapy and photo-enhanced chemodynamic therapy (CDT) can significantly boost its therapy. We rationally fabricated tumor cell membrane coated Cu2-xSe nanoparticles (CS NPs) and an inhibitor of glutamine metabolism (Purpurin) for combined therapy, because glutamine rather than glucose plays a crucial role in the proliferation and growth of GBM cells, and serves as a precursor for the synthesis of glutathione (GSH). The resultant CS-P@CM NPs can be specifically delivered to the tumor site to inhibit glutamine metabolism in tumor cells, suppress tumor intracellular GSH, and increase H2O2 content, which benefit the CDT catalyzed by CS NPs. The cascade reaction can be further enhanced by irradiation with the second near-infrared (NIR-II) light at the maximum concentration of H2O2, which can be monitored by photoacoustic imaging. The NIR-II light irradiation can generate a large amount of reactive oxygen species (ROS) within a short time to kill tumor cells and enhance the CDT efficacy. This is the first work on the treatment of orthotopic malignant GBM through combined glutamine metabolism therapy and photo-enhanced CDT, and provides insights into the treatment of other solid tumors by modulating the metabolism of tumor cells.
Collapse
Affiliation(s)
- Ling Wang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Zhengpeng Gu
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Mengxiao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| |
Collapse
|
5
|
Chahal M, Aljawi G, Harrison R, Nichol A, Thiessen B. Treatment Patterns and Outcomes of Patients with Grade 4 Glioma Treated with Radiation during the COVID-19 Pandemic. Curr Oncol 2023; 30:3091-3101. [PMID: 36975447 PMCID: PMC10046893 DOI: 10.3390/curroncol30030234] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
During the first year of the COVID-19 pandemic there was a global disruption in the provision of healthcare. Grade 4 gliomas are rapidly progressive tumors, and these patients are at risk of poorer outcomes due to delays in diagnosis or treatment. We retrospectively evaluated the impact of the pandemic on treatment patterns and outcomes of patients with grade 4 gliomas in British Columbia. We identified a cohort of 85 patients treated with radiotherapy between March 2020–2021 (COVID era) and compared baseline characteristics, treatments, and outcomes with a control cohort of 79 patients treated between March 2018–2019 (pre-COVID era). There were fewer patients treated with radiotherapy over age 65 in the COVID era compared to the pre-COVID era (p = 0.037). Significantly more patients were managed with biopsy relative to partial or gross total resection during the COVID era compared to the pre-COVID era (p = 0.04), but there were no other significant differences in time to assessment, time to treatment, or administration of adjuvant therapy. There was no difference in overall survival between eras (p = 0.189). In this assessment of outcomes of grade 4 gliomas during the pandemic, we found that despite less aggressive surgical intervention during the COVID era, outcomes were similar between eras.
Collapse
Affiliation(s)
- Manik Chahal
- Division of Medical Oncology, British Columbia Cancer-Vancouver Cancer Centre, Vancouver, BC V5Z 4E6, Canada
- Correspondence:
| | - Ghufran Aljawi
- Division of Radiation Oncology, British Columbia Cancer-Vancouver Cancer Centre, Vancouver, BC V5Z 4E6, Canada
| | - Rebecca Harrison
- Division of Medical Oncology, British Columbia Cancer-Vancouver Cancer Centre, Vancouver, BC V5Z 4E6, Canada
| | - Alan Nichol
- Division of Radiation Oncology, British Columbia Cancer-Vancouver Cancer Centre, Vancouver, BC V5Z 4E6, Canada
| | - Brian Thiessen
- Division of Medical Oncology, British Columbia Cancer-Vancouver Cancer Centre, Vancouver, BC V5Z 4E6, Canada
| |
Collapse
|
6
|
Bafiti V, Ouzounis S, Siapi E, Grypari IM, Theofanopoulos A, Panagiotopoulos V, Zolota V, Kardamakis D, Katsila T. Bioenergetic Profiling in Glioblastoma Multiforme Patients with Different Clinical Outcomes. Metabolites 2023; 13:362. [PMID: 36984801 PMCID: PMC10051505 DOI: 10.3390/metabo13030362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
The accumulation of cell biomass is associated with dramatically increased bioenergetic and biosynthetic demand. Metabolic reprogramming, once thought as an epiphenomenon, currently relates to disease progression, also in response to extracellular fate-decisive signals. Glioblastoma multiforme patients often suffer misdiagnosis, short survival time, low quality of life, and poor disease management options. Today, tumor genetic testing and histological analysis guide diagnosis and treatment. We and others appreciate that metabolites complement translational biomarkers and molecular signatures in disease profiling and phenotyping. Herein, we coupled a mixed-methods content analysis to a mass spectrometry-based untargeted metabolomic analysis on plasma samples from glioblastoma multiforme patients to delineate the role of metabolic remodeling in biological plasticity and, hence, disease severity. Following data processing and analysis, we established a bioenergetic profile coordinated by the mitochondrial function and redox state, lipids, and energy substrates. Our findings show that epigenetic modulators are key players in glioblastoma multiforme cell metabolism, in particular when microRNAs are considered. We propose that biological plasticity in glioblastoma multiforme is a mechanism of adaptation and resistance to treatment which is eloquently revealed by bioenergetics.
Collapse
Affiliation(s)
- Vivi Bafiti
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Sotiris Ouzounis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Eleni Siapi
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Ioanna Maria Grypari
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| | | | | | - Vasiliki Zolota
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece
| | - Dimitrios Kardamakis
- Department of Radiation Oncology, University of Patras Medical School, 26504 Patras, Greece
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| |
Collapse
|
7
|
Trinder SM, McKay C, Power P, Topp M, Chan B, Valvi S, McCowage G, Govender D, Kirby M, Ziegler DS, Manoharan N, Hassall T, Kellie S, Heath J, Alvaro F, Wood P, Laughton S, Tsui K, Dodgshun A, Eisenstat DD, Endersby R, Luen SJ, Koh ES, Sim HW, Kong B, Gottardo NG, Whittle JR, Khuong-Quang DA, Hansford JR. BRAF-mediated brain tumors in adults and children: A review and the Australian and New Zealand experience. Front Oncol 2023; 13:1154246. [PMID: 37124503 PMCID: PMC10140567 DOI: 10.3389/fonc.2023.1154246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/13/2023] [Indexed: 05/02/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) pathway signaling pathway is one of the most commonly mutated pathways in human cancers. In particular, BRAF alterations result in constitutive activation of the rapidly accelerating fibrosarcoma-extracellular signal-regulated kinase-MAPK significant pathway, leading to cellular proliferation, survival, and dedifferentiation. The role of BRAF mutations in oncogenesis and tumorigenesis has spurred the development of targeted agents, which have been successful in treating many adult cancers. Despite advances in other cancer types, the morbidity and survival outcomes of patients with glioma have remained relatively stagnant. Recently, there has been recognition that MAPK dysregulation is almost universally present in paediatric and adult gliomas. These findings, accompanying broad molecular characterization of gliomas, has aided prognostication and offered opportunities for clinical trials testing targeted agents. The use of targeted therapies in this disease represents a paradigm shift, although the biochemical complexities has resulted in unexpected challenges in the development of effective BRAF inhibitors. Despite these challenges, there are promising data to support the use of BRAF inhibitors alone and in combination with MEK inhibitors for patients with both low-grade and high-grade glioma across age groups. Safety and efficacy data demonstrate that many of the toxicities of these targeted agents are tolerable while offering objective responses. Newer clinical trials will examine the use of these therapies in the upfront setting. Appropriate duration of therapy and durability of response remains unclear in the glioma patient cohort. Longitudinal efficacy and toxicity data are needed. Furthermore, access to these medications remains challenging outside of clinical trials in Australia and New Zealand. Compassionate access is limited, and advocacy for mechanism of action-based drug approval is ongoing.
Collapse
Affiliation(s)
- Sarah M. Trinder
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Campbell McKay
- Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, VIC, Australia
| | - Phoebe Power
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- School of Women’s and Children’s Health, University of New South Wales, Randwick, NSW, Australia
| | - Monique Topp
- Department of Medical Oncology, Peter MacCallum Cancer Center, Melbourne, VIC, Australia
| | - Bosco Chan
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - Santosh Valvi
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
| | - Geoffrey McCowage
- Department of Oncology, Children’s Hospital at Westmead, Sydney, NSW, Australia
- Australasian Children’s Cancer Trials, Clayton, VIC, Australia
| | - Dinisha Govender
- Department of Oncology, Children’s Hospital at Westmead, Sydney, NSW, Australia
| | - Maria Kirby
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - David S. Ziegler
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Medicine and Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Neevika Manoharan
- Sydney Children’s Hospital, Children’s Cancer Institute, University of New South Wales, Randwick, NSW, Australia
- School of Clinical Medicine, University of New South Wales (UNSW) Medicine and Health, University of New South Wales (UNSW) Sydney, Sydney, NSW, Australia
| | - Tim Hassall
- Queensland Children’s Hospital, University of Queensland, Brisbane, QLD, Australia
| | - Stewart Kellie
- Westmead Children’s Hospital, University of Sydney, Westmead, NSW, Australia
| | - John Heath
- Department of Pediatric Oncology, Royal Hobart Hospital, Hobart, TAS, Australia
| | - Frank Alvaro
- Department of Pediatric Oncology, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - Paul Wood
- Monash Medical Centre, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Stephen Laughton
- Starship Blood and Cancer Centre, Starship Children’s Hospital, Auckland, New Zealand
| | - Karen Tsui
- Starship Blood and Cancer Centre, Starship Children’s Hospital, Auckland, New Zealand
| | - Andrew Dodgshun
- Children’s Haematology/Oncology Centre, Christchurch Hospital, Christchurch, New Zealand
| | - David D. Eisenstat
- Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, VIC, Australia
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Raelene Endersby
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA, Australia
- Centre for Child Health Research, University of Western Australia, Perth, WA, Australia
| | - Stephen J. Luen
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC, Australia
| | - Eng-Siew Koh
- Department of Radiation Oncology, Liverpool and Macarther Cancer Therapy Centres, Liverpool, NSW, Australia
- Department of Medicine, University of New South Wales, Sydney, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Hao-Wen Sim
- National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Medical Oncology, The Kinghorn Cancer Centre, Sydney, NSW, Australia
- Department of Medical Oncology, Chris O’Brien Lifehouse, Sydney, NSW, Australia
| | - Benjamin Kong
- National Health and Medical Research Council (NHMRC) Clinical Trials Centre, University of Sydney, Sydney, NSW, Australia
- Department of Medical Oncology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Nicholas G. Gottardo
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, WA, Australia
- Brain Tumour Research Program, Telethon Kids Cancer Centre, Telethon Kids Institute, Nedlands, WA, Australia
| | - James R. Whittle
- Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | | | - Jordan R. Hansford
- Michael Rice Cancer Centre, Women’s and Children’s Hospital, North Adelaide, SA, Australia
- South Australian Health and Medical Research Institute South Australia, Adelaide, SA, Australia
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
- *Correspondence: Jordan R. Hansford,
| |
Collapse
|
8
|
Sass D, Vera E, Choi A, Acquaye A, Briceno N, Christ A, Grajkowska E, Jammula V, Levine J, Lindsley M, Reyes J, Roche K, Rogers JL, Timmer M, Boris L, Burton E, Lollo N, Panzer M, Penas-Prado M, Pillai V, Polskin L, Theeler BJ, Wu J, Gilbert MR, Armstrong TS, Leeper H. Evaluation of the key geriatric assessment constructs in primary brain tumor population - a descriptive study. J Geriatr Oncol 2022; 13:1194-1202. [PMID: 36041994 DOI: 10.1016/j.jgo.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/04/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Despite an increasing aging population, older adults (≥ 65 years) with primary brain tumors (PBTs) are not routinely assessed for geriatric vulnerabilities. Recent reports of geriatric assessment (GA) in patients with glioblastomas demonstrated that GA may serve as a sensitive prognosticator of overall survival. Yet, current practice does not include routine evaluation of geriatric vulnerabilities and the relevance of GA has not been previously evaluated in broader cohorts of PBT patients. The objective of this descriptive study was to assess key GA constructs in adults with PBT dichotomized into older versus younger groups. MATERIALS AND METHODS A cross-sectional analysis of data collected from 579 participants with PBT recruited between 2016 and 2020, dichotomized into older (≥ 65 years, n = 92) and younger (≤ 64 years, n = 487) from an ongoing observational trial. GA constructs were evaluated using socio-demographic characteristics, Charlson Comorbidity Index (CCI), polypharmacy (>5 daily medications), Karnofsky Performance Status (KPS), Neurologic Function Score (NFS), and patient-reported outcome assessments including general health, functional status, symptom burden and interference, and mood. Descriptive statistics, t-tests, chi-square tests, and Pearson correlations were used to evaluate differences between age groups. RESULTS Older participants were more likely to have problems with mobility (58% vs. 44%), usual activities (64% vs 50%) and self-care (38% vs 26%) compared to the younger participants (odds ratios [ORs] = 1.3-1.4, ps < 0.05), while older participants were less likely to report feeling distressed (OR = 0.4, p < 0.05). Older participants also had higher CCI and were more likely to have polypharmacy (OR = 1.7, ps < 0.05). Increasing age strongly correlated with worse KPS score (r = -0.232, OR = 1.4, p < 0.001) and worse NFS (r = 0.210, OR = 1.5, p < 0.001). No differences were observed in overall symptom burden, symptom interference, and anxiety/depression scores. DISCUSSION While commonly used GA tools were not available, the study employed patient- and clinician-reported outcomes to identify potential future research directions for the use of GA in the broader neuro-oncology population. Findings illustrate missed opportunities in neuro-oncology practice and underscore the need for incorporation of GA into routine care of this population. Future studies are warranted to further evaluate the prognostic utility of GA and to better understand functional aging outcomes in this patient population.
Collapse
Affiliation(s)
- Dilorom Sass
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Elizabeth Vera
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anna Choi
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alvina Acquaye
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Briceno
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alexa Christ
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ewa Grajkowska
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Varna Jammula
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jason Levine
- Office of Information Technology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Matthew Lindsley
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer Reyes
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kayla Roche
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James L Rogers
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael Timmer
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lisa Boris
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - Eric Burton
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Lollo
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marissa Panzer
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marta Penas-Prado
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Valentina Pillai
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lily Polskin
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, MD, USA
| | - Brett J Theeler
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Jing Wu
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Terri S Armstrong
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Heather Leeper
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Zhao B, Wu J, Xia Y, Li H, Wang Y, Qu T, Xing H, Wang Y, Ma W. Comparative efficacy and safety of therapeutics for elderly glioblastoma patients: A Bayesian network analysis. Pharmacol Res 2022; 182:106316. [PMID: 35724820 DOI: 10.1016/j.phrs.2022.106316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/02/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
Optimal management strategies for elderly glioblastoma (GBM) patients remain elusive. Overall survival (OS) and progression-free survival (PFS) in elderly newly diagnosed GBM (ndGBM) patients were analyzed with random-effects Bayesian network meta-analysis with the estimated hazard ratio (HR) with a 95% confidence interval (95% CrI). In addition, OS, PFS and adverse event (AE) data on ndGBM and recurrent GBM (rGBM) were assessed. Seventeen eligible trials with 12 on ndGBM and 5 on rGBM were identified. For the improvements it induced in the OS of elderly ndGBM patients, tumor treating field (TTF) + temozolomide (TMZ) (HR: 0.11, 95% CrI: 0.02-0.67 vs. supportive care (SPC)) ranked first, followed by TMZ + hyperfractionated radiotherapy (HFRT) (HR: 0.17, 95% CrI: 0.03-0.95 vs. SPC). For the improvements it induced in the PFS of elderly ndGBM patients, bevacizumab (BEV) + HFRT ranked first, followed by TMZ + HFRT. TMZ was observed to be more effective in O6-methylguanine-DNA-methyltransferase (MGMT) promoter-methylated ndGBM patients than HFRT and standard radiotherapy (STRT). For elderly rGBM patients, the treatments included were comparable. The rates of other neurological symptoms (16.1%) and lymphocytopenia (10.4%) were higher in ndGBM patients; lymphocytopenia (10.3%) and infection (8.1%) were higher in rGBM patients among the ≥ 3 grade AEs. TMZ-related AEs should be further considered. In conclusion, TTF + adjuvant TMZ and TMZ + HFRT are most likely to be recommended for elderly ndGBM patients. No best treatment for rGBM in elderly patients is illustrated. TMZ is identified to be more effective in elderly ndGBM patients with methylated MGMT status; however, AEs associated with TMZ-related therapy should be well considered and managed.
Collapse
Affiliation(s)
- Binghao Zhao
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Jiaming Wu
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Yu Xia
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Huanzhang Li
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Yaning Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Tian Qu
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Hao Xing
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China
| | - Yu Wang
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China.
| | - Wenbin Ma
- Departments of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, PR China; China Pituitary Disease Registry Center, Chinese Pituitary Adenoma Cooperative Group, Beijing, PR China; China Alliance of Rare Diseases, Beijing, PR China.
| |
Collapse
|
10
|
Bafiti V, Ouzounis S, Chalikiopoulou C, Grigorakou E, Grypari IM, Gregoriou G, Theofanopoulos A, Panagiotopoulos V, Prodromidi E, Cavouras D, Zolota V, Kardamakis D, Katsila T. A 3-miRNA Signature Enables Risk Stratification in Glioblastoma Multiforme Patients with Different Clinical Outcomes. Curr Oncol 2022; 29:4315-4331. [PMID: 35735454 PMCID: PMC9221847 DOI: 10.3390/curroncol29060345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Malignant gliomas constitute a complex disease phenotype that demands optimum decision-making as they are highly heterogeneous. Such inter-individual variability also renders optimum patient stratification extremely difficult. microRNA (hsa-miR-20a, hsa-miR-21, hsa-miR-21) expression levels were determined by RT-qPCR, upon FFPE tissue sample collection of glioblastoma multiforme patients (n = 37). In silico validation was then performed through discriminant analysis. Immunohistochemistry images from biopsy material were utilized by a hybrid deep learning system to further cross validate the distinctive capability of patient risk groups. Our standard-of-care treated patient cohort demonstrates no age- or sex- dependence. The expression values of the 3-miRNA signature between the low- (OS > 12 months) and high-risk (OS < 12 months) groups yield a p-value of <0.0001, enabling risk stratification. Risk stratification is validated by a. our random forest model that efficiently classifies (AUC = 97%) patients into two risk groups (low- vs. high-risk) by learning their 3-miRNA expression values, and b. our deep learning scheme, which recognizes those patterns that differentiate the images in question. Molecular-clinical correlations were drawn to classify low- (OS > 12 months) vs. high-risk (OS < 12 months) glioblastoma multiforme patients. Our 3-microRNA signature (hsa-miR-20a, hsa-miR-21, hsa-miR-10a) may further empower glioblastoma multiforme prognostic evaluation in clinical practice and enrich drug repurposing pipelines.
Collapse
Affiliation(s)
- Vivi Bafiti
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (V.B.); (S.O.); (C.C.); (G.G.)
| | - Sotiris Ouzounis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (V.B.); (S.O.); (C.C.); (G.G.)
| | - Constantina Chalikiopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (V.B.); (S.O.); (C.C.); (G.G.)
| | - Eftychia Grigorakou
- Biomedical Engineering Department, University of West Attica, 11243 Athens, Greece; (E.G.); (D.C.)
| | - Ioanna Maria Grypari
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece; (I.M.G.); (V.Z.)
| | - Gregory Gregoriou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (V.B.); (S.O.); (C.C.); (G.G.)
- American Community Schools (ACS), 15234 Athens, Greece;
| | - Andreas Theofanopoulos
- Department of Neurosurgery, University Hospital of Patras, 26504 Patras, Greece; (A.T.); (V.P.)
| | | | | | - Dionisis Cavouras
- Biomedical Engineering Department, University of West Attica, 11243 Athens, Greece; (E.G.); (D.C.)
| | - Vasiliki Zolota
- Department of Pathology, School of Medicine, University of Patras, 26504 Patras, Greece; (I.M.G.); (V.Z.)
| | - Dimitrios Kardamakis
- Department of Radiation Oncology, University of Patras Medical School, 26504 Patras, Greece;
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (V.B.); (S.O.); (C.C.); (G.G.)
| |
Collapse
|