Tang Y, Wang H, He Q, Chen Y, Wang J. Bioinformatics Method Was Used to Analyze the Highly Expressed Gene FAM83A of Breast Cancer in Young Women.
Appl Bionics Biomech 2022;
2022:5358030. [PMID:
35392358 PMCID:
PMC8983250 DOI:
10.1155/2022/5358030]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022] Open
Abstract
Objectives
Preliminary analysis of breast cancer related to unknown functional gene FAM83A through bioinformatics knowledge to inform further experimental studies. Select high expression genes for breast cancer and use bioinformatics methods to predict the biological function of FAM83A.
Methods
Genes with significant differences in expression between breast tumors and normal breast tissue libraries were selected from CGAP's SAGE Digital Gene Expression Displayer (DGED) database. An unknown functional gene, FAM83A, which is highly expressed in breast cancer, was screened. We performed an analysis of the gene structure, subcellular localization, physicochemical properties of the encoding products, functional sites, protein structure, and functional domains.
Results
Through SAGE DGED, a total of 185 genes with expression differences were found. The structure and function of FAM83A have ideal predictions, and it is generally determined that this gene encodes a nuclear protein with a nucleoprotein. The active site of PLDc and the functional domain of DUF1669 can be involved in signal transduction and gene expression regulation in tumorigenesis and metastasis. Digital gene representation of the Tumor Genome Project Data Library was used to select differentially expressed genes in breast cancer tissue and breast benign tumor tissue.
Conclusion
Studies show that FAM83A is a potential research target associated with tumorigenesis and metastasis. Initial tests confirmed the expression of this gene. Lay a solid foundation for further research learning. FAM83A is a highly expressed gene in breast cancer and can serve as a target for studying molecular mechanisms in breast cancer.
Collapse