1
|
Matos P, Jordan P. Alternative Splicing at the Crossroad of Inflammatory Bowel Diseases and Colitis-Associated Colon Cancer. Cancers (Basel) 2025; 17:219. [PMID: 39858001 PMCID: PMC11764256 DOI: 10.3390/cancers17020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
The risk of developing colorectal cancer (CRC) is increased in ulcerative colitis patients compared to the general population. This increased risk results from the state of chronic inflammation, a well-known tumour-promoting condition. This review explores the pathologic and molecular characteristics of colitis-associated colon cancer (CAC), emphasizing the distinct features from sporadic CRC. We focus on the key signalling pathways involved in the transition to CAC, highlighting the emerging role of alternative splicing in these processes, namely on how inflammation-induced alternative splicing can significantly contribute to the increased CRC risk observed among UC patients. This review calls for more transcriptomic studies to elucidate the molecular mechanisms through which inflammation-induced alternative splicing drives CAC pathogenesis. A better understanding of these splicing events is crucial as they may reveal novel biomarkers for disease progression and have the potential to target changes in alternative splicing as a therapeutic strategy.
Collapse
Affiliation(s)
- Paulo Matos
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| |
Collapse
|
2
|
Lai X, Liu B, Wan Y, Zhou P, Li W, Hu W, Gong W. Metformin alleviates colitis-associated colorectal cancer via inhibition of the TLR4/MyD88/NFκB/MAPK pathway and macrophage M2 polarization. Int Immunopharmacol 2025; 144:113683. [PMID: 39602956 DOI: 10.1016/j.intimp.2024.113683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
BACKGROUND Colon inflammation plays an essential role in the development and progression of colorectal cancer. Emerging evidence from clinical and animal studies indicates that metformin may reduce the risk of colorectal cancer through its anti-inflammatory effects. AIMS To investigate the efficacy of metformin in reducing the risk of colorectal cancer and the possible pathways and mechanisms. METHODS The Enterotoxigenic Bacteroides Fragilis (ETBF)/azoxymethane (AOM)/dextran sulfate sodium (DSS) mouse model was established and low-dose metformin (125 mg/kg) or high-dose metformin (250 mg/kg) was administered daily by gavage. Colon tumors were counted, and colon tissue was stained with hematoxylin and eosin (HE) and Periodic Acid-Schiff's and Alcian Blue (PAS-AB). Colon Ki67, ZO-1 Muc2, Claudin-1, Occludin, MPO, reactive oxygen species (ROS), E-cadherin, CD206 and Arg-1 expression were detected by immunohistochemistry or immunofluorescence staining. NF-κB pathway-related protein expression was assessed by Western blot. Fecal short-chain fatty acid (SCFA) levels were also examined. RESULTS Our results showed that low- or high-dose metformin ameliorates colonic mucosal damage, reduces colonic inflammation, and eventually inhibits colorectal tumorigenesis in the ETBF/AOM/DSS mouse model. Our further research found that metformin suppresses the expression of TLR4/MyD88/NFκB/MAPK pathway-related proteins, modulates macrophage M2 polarization and increases SCFA levels in colon contents, which may be the mechanisms by which metformin exerts a protective effect against colon carcinogenesis. CONCLUSION Metformin inhibited colorectal tumorigenesis by suppressing the TLR4/MyD88/NFκB/MAPK pathway, modulating macrophage M2 polarization and increasing SCFA levels. It holds promise as a potentially effective treatment for colorectal cancer.
Collapse
Affiliation(s)
- Xueying Lai
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China; Department of Gastroenterology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China
| | - Bin Liu
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yu Wan
- Department of Gastroenterology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou 511400, China
| | - Ping Zhou
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China
| | - Wanjun Li
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China
| | - Wei Gong
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, 510086, China.
| |
Collapse
|
3
|
Jiménez E, Vázquez A, González S, Sacedón R, Fernández-Sevilla LM, Varas A, Subiza JL, Valencia J, Vicente Á. Mucosal Bacterial Immunotherapy Attenuates the Development of Experimental Colitis by Reducing Inflammation Through the Regulation of Myeloid Cells. Int J Mol Sci 2024; 25:13629. [PMID: 39769391 PMCID: PMC11728189 DOI: 10.3390/ijms252413629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Ulcerative colitis is a chronic relapsing-remitting and potentially progressive form of inflammatory bowel disease in which there is extensive inflammation and mucosal damage in the colon and rectum as a result of an abnormal immune response. MV130 is a mucosal-trained immunity-based vaccine used to prevent respiratory tract infections in various clinical settings. Additionally, MV130 may induce innate immune cells that acquire anti-inflammatory properties and promote tolerance, which could have important implications for chronic inflammatory diseases such as ulcerative colitis. This work demonstrated that the prophylactic administration of MV130 substantially mitigated colitis in a mouse model of acute colitis induced by dextran sulphate sodium. MV130 downregulated systemic and local inflammatory responses, maintained the integrity of the intestinal barrier by preserving the enterocyte layer and goblet cells, and reduced the oedema and fibrosis characteristic of the disease. Mechanistically, MV130 significantly reduced the infiltration of neutrophils and pro-inflammatory macrophages in the intestinal wall of the diseased animals and favoured the appearance of M2-polarised macrophages. These results suggest that MV130 might have therapeutic potential for the treatment of ulcerative colitis, reducing the risk of relapse and the progression of disease.
Collapse
Affiliation(s)
- Eva Jiménez
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Alberto Vázquez
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
| | - Sara González
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Doce de Octubre (i+12), 28041 Madrid, Spain
| | - Rosa Sacedón
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Lidia M. Fernández-Sevilla
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos, 28922 Alcorcón, Spain
| | - Alberto Varas
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | | | - Jaris Valencia
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain;
| | - Ángeles Vicente
- Department of Cell Biology, Faculty of Medicine, UCM, 28040 Madrid, Spain; (E.J.); (A.V.); (S.G.); (R.S.); (A.V.)
- Health Research Institute of the Hospital Doce de Octubre (i+12), 28041 Madrid, Spain
| |
Collapse
|
4
|
Worix A, Keswani RN. Advanced Techniques in Therapeutic and Inflammatory Bowel Disease Colonoscopy. Gastroenterol Clin North Am 2024; 53:587-602. [PMID: 39489577 DOI: 10.1016/j.gtc.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Colonoscopy is an essential diagnostic and therapeutic tool in the management of colorectal disease. This review explores the recent advances of colonoscopy that have revolutionized patient care in the era of minimally invasive medicine. Key areas of focus include innovations in imaging, advanced endoscopic resection techniques, and nonsurgical management of strictures. Advances in therapeutic endoscopy are especially evident in inflammatory bowel disease. As the landscape of colonoscopy continues to evolve, it will continue to play a central role in modern medicine, shaping the future of patient care, and therapeutic interventions.
Collapse
Affiliation(s)
- Alexander Worix
- Hospital Medicine, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Rajesh N Keswani
- Division of Gastroenterology, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
5
|
Dong WM, Zhang YT, Wang HM, Deng MX, Chen ZX, He HP, Dong FW. Anti-Inflammatory Activities of New Compounds Isolated from the Fruits of Foeniculum Vulgare Mill. Chem Biodivers 2024:e202401788. [PMID: 39429056 DOI: 10.1002/cbdv.202401788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 10/22/2024]
Abstract
Forty-nine compounds, including six previously unknown together with forty-three known ones, were isolated from the fruits of Foeniculum vulgare Mill. Their structures were elucidated using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), infrared spectroscopy (IR), ultraviolet-visible spectroscopy (UV), nuclear magnetic resonance (NMR), and electronic circular dichroism (ECD) methods. All isolates were evaluated their anti-inflammatory activity. The results indicated that compounds 1 and 6 inhibit lipopolysaccharide (LPS)-induced nitric oxide production in RAW 264.7 macrophages with IC50 values of 41.77±1.80, 46.72±1.75 μmol/L, respectively. Moreover, the potential targets of the four active ingredients were explored through network pharmacology, revealing that SRC, TP53, AKT1, and PIK3CA may serve as key anti-inflammatory targets. Additionally, the anti-inflammatory activities of compounds 1-6 were first observed in this experiment.
Collapse
Affiliation(s)
- Wei-Mao Dong
- Yunnan, Key Laboratory of Southem Medicinal, Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Yun-Tao Zhang
- Yunnan, Key Laboratory of Southem Medicinal, Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Hai-Ming Wang
- Yunnan, Key Laboratory of Southem Medicinal, Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Mao-Xin Deng
- Yunnan, Key Laboratory of Southem Medicinal, Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Zhang-Xian Chen
- Yunnan, Key Laboratory of Southem Medicinal, Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Hong-Ping He
- Yunnan, Key Laboratory of Southem Medicinal, Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Fa-Wu Dong
- Yunnan, Key Laboratory of Southem Medicinal, Utilization, Yunnan University of Chinese Medicine, Kunming, 650500, China
| |
Collapse
|
6
|
Guo J, Meng F, Hu R, Chen L, Chang J, Zhao K, Ren H, Liu Z, Hu P, Wang G, Tai J. Inhibition of the NF-κB/HIF-1α signaling pathway in colorectal cancer by tyrosol: a gut microbiota-derived metabolite. J Immunother Cancer 2024; 12:e008831. [PMID: 39343509 PMCID: PMC11440206 DOI: 10.1136/jitc-2024-008831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND The development and progression of colorectal cancer (CRC) are influenced by the gut environment, much of which is modulated by microbial-derived metabolites. Although some research has been conducted on the gut microbiota, there have been limited empirical investigations on the role of the microbial-derived metabolites in CRC. METHODS In this study, we used LC-MS and 16S rRNA sequencing to identify gut microbiome-associated fecal metabolites in patients with CRC and healthy controls. Moreover, we examined the effects of Faecalibacterium prausnitzii and tyrosol on CRC by establishing orthotopic and subcutaneous tumor mouse models. Additionally, we conducted in vitro experiments to investigate the mechanism through which tyrosol inhibits tumor cell growth. RESULTS Our study revealed changes in the gut microbiome and metabolome that are linked to CRC. We observed that Faecalibacterium prausnitzii, a bacterium known for its multiple anti-CRC properties, is significantly more abundant in the intestines of healthy individuals than in those of individuals with CRC. In mouse tumor models, our study illustrated that Faecalibacterium prausnitzii has the ability to inhibit tumor growth by reducing inflammatory responses and enhancing tumor immunity. Additionally, research investigating the relationship between CRC-associated features and microbe-metabolite interactions revealed a correlation between Faecalibacterium prausnitzii and tyrosol, both of which are less abundant in the intestines of tumor patients. Tyrosol demonstrated antitumor activity in vivo and specifically targeted CRC cells without affecting intestinal epithelial cells in cell experiments. Moreover, tyrosol treatment effectively reduced the levels of reactive oxygen species (ROS) and inflammatory cytokines in MC38 cells. Western blot analysis further revealed that tyrosol inhibited the activation of the NF-κB and HIF-1 signaling pathways. CONCLUSIONS This study investigated the relationship between CRC development and changes in the gut microbiota and microbial-derived metabolites. Specifically, the intestinal metabolite tyrosol exhibits antitumor effects by inhibiting HIF-1α/NF-κB signaling pathway activation, leading to a reduction in the levels of ROS and inflammatory factors. These findings indicate that manipulating the gut microbiota and its metabolites could be a promising approach for preventing and treating CRC and could provide insights for the development of anticancer drugs.
Collapse
Affiliation(s)
- Jian Guo
- Department of Colorectal&anal surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Fanqi Meng
- Department of Colorectal&anal surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Ruixue Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Lei Chen
- Department of Colorectal&anal surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Jiang Chang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Ke Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Honglin Ren
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zengshan Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Pan Hu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Guangyi Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Jiandong Tai
- Department of Colorectal&anal surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
7
|
Mohd Tamsir N, Mohd Esa N, Shafie NH, Hamzah H. Manilkara zapota (L.) P. Royen Leaf Mitigates Colitis-Associated Colon Cancer through Anti-inflammatory Modulation in BALB/C Mice. Adv Pharmacol Pharm Sci 2024; 2024:1137696. [PMID: 39290583 PMCID: PMC11407886 DOI: 10.1155/2024/1137696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/02/2024] [Accepted: 08/24/2024] [Indexed: 09/19/2024] Open
Abstract
Colitis-associated colon cancer (CAC) arises from prolonged inflammation of the inner colon lining. An alternative approach to treating or preventing CAC involves the use of natural products such as Manilkara zapota (L.) P. Royen or M. zapota, which has been studied for its medicinal and pharmacological properties. Previous research has demonstrated the anticancer effects of M. zapota leaf aqueous extract (MZLAE) on colon cancer cells. However, no animal study has investigated the effects of MZLAE on CAC. Therefore, this study aimed to assess the potential anti-inflammatory effects of MZLAE on CAC in mice. In the present study, CAC was induced using azoxymethane (AOM) and dextran sodium sulphate (DSS). The mice were randomly assigned into five groups: (a) normal, (b) AOM/DSS, (c) AOM/DSS + 50 mg/kg MZLAE, (d) AOM/DSS + 100 mg/kg MZLAE, and (e) AOM/DSS + 200 mg/kg MZLAE. Various parameters including disease activity index (DAI), colon length and weight, reactive oxygen species (ROS), superoxide, superoxide dismutase (SOD), histopathological assessment, and proinflammatory cytokines expression were analysed. The results indicated that MZLAE improved DAI scores, colon length, colon histological dysplasia and inflammation scores, and SOD level, while also reducing ROS production and expression of proinflammatory cytokines (tumour necrosis factor-alpha (TNF- α) and interleukin 6 (IL-6)). In conclusion, this study suggests that MZLAE may serve as a promising source of antioxidants and anti-inflammatory agents for alleviating CAC.
Collapse
Affiliation(s)
- Norain Mohd Tamsir
- Department of Nutrition Faculty of Medicine and Health Sciences Universiti Putra Malaysia 43400, Serdang, Selangor, Malaysia
| | - Norhaizan Mohd Esa
- Department of Nutrition Faculty of Medicine and Health Sciences Universiti Putra Malaysia 43400, Serdang, Selangor, Malaysia
- Natural Medicine and Product Research Laboratory (NaturMeds) Institute of Bioscience Universiti Putra Malaysia 43400, Serdang, Selangor, Malaysia
| | - Nurul Husna Shafie
- Department of Nutrition Faculty of Medicine and Health Sciences Universiti Putra Malaysia 43400, Serdang, Selangor, Malaysia
- Laboratory of UPM-MAKNA Cancer Research Institute of Bioscience Universiti Putra Malaysia 43400, Serdang, Selangor, Malaysia
| | - Hazilawati Hamzah
- Department of Veterinary Pathology and Microbiology Faculty of Veterinary Medicine Universiti Putra Malaysia 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
8
|
Prakash P, Verma S, Gupta S. Influence of microbiome in intraprostatic inflammation and prostate cancer. Prostate 2024; 84:1179-1188. [PMID: 38899408 DOI: 10.1002/pros.24756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/22/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Chronic infection and inflammation have been linked to the development of prostate cancer. Dysbiosis of the oral and gut microbiomes and subsequent microbial translocation can lead to pathogenic prostate infections. Microbial-produced metabolites have also been associated with signaling pathways that promote prostate cancer development. A comprehensive discussion on the mechanisms of microbiome infection and the prostate microenvironment is essential to understand prostate carcinogenesis. METHODS Published studies were used from the National Center for Biotechnology Information (NCBI) database to conduct a narrative review. No restrictions were applied in the selection of articles. RESULTS Microbiome-derived short-chain fatty acids (SCFAs) have been found to upregulate multiple signaling pathways, including MAPK and PI3K, through IGF-1 signaling and M2 macrophage polarization. SCFAs can also upregulate Toll-like receptors, leading to chronic inflammation and the creation of a pro-prostate cancer environment. Dysbiosis of oral microbiota has been correlated with prostate infection and inflammation. Additionally, pathogenic microbiomes associated with urinary tract infections have shown a link to prostate cancer, with vesicoureteral reflux potentially contributing to prostate infection. CONCLUSIONS This review offers a comprehensive understanding of the impact of microbial infections linked to intraprostatic inflammation as a causative factor for prostate cancer. Further studies involving the manipulation of the microbiome and its produced metabolites may provide a more complete understanding of the microenvironmental mechanisms that promote prostate carcinogenesis.
Collapse
Affiliation(s)
- Pranav Prakash
- College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shiv Verma
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Sanjay Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio, USA
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| |
Collapse
|
9
|
Zamzam YA, Zamzam Y, Elsaka A, Fadaly LA, Haydara T, Amer AI. Potential carcinogenic role of Reg IV in ulcerative colitis-associated colorectal neoplasia. Ecancermedicalscience 2024; 18:1751. [PMID: 39421174 PMCID: PMC11484682 DOI: 10.3332/ecancer.2024.1751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Indexed: 10/19/2024] Open
Abstract
Background Early detection of ulcerative colitis-associated neoplasia (UC-N) remains a clinical challenge. Identification of molecular biomarkers for colorectal dysplasia and cancer may be extremely beneficial in early detection and managing cancer risk in long-standing ulcerative colitis (UC) patients. Objective The aim of this work is to investigate the role of Reg IV in comparison to P53 and KRAS in UC-associated dysplasia and colorectal cancer (CRC) in order to evaluate the potential use of Reg IV for dysplasia and cancer screening in UC patients. Methods The study was conducted on 5 groups each 20 colonic endoscopic samples: 1) Normal colonic mucosa, 2) Active UC without dysplasia/carcinoma, 3) UC-associated dysplasia, 4) UC-associated CRC (UC-CRC), 5) Sporadic CRC. All included cases were subjected to Reg IV mRNA expression analysis by quantitative reverse transcription polymerase chain reaction, and immunostaining for Reg IV, P53 and KRAS. Results Reg IV mRNA expression levels were found to be significantly higher in groups 3 and 4 (mean: 3.37 and 5.70, respectively). Reg IV immunostaining was highly expressed in groups 3 and 4 (mean: 45.80 and 62.35, respectively). While P53 and KRAS immunostaining was highly expressed in group 5 (mean: 64.57 and 62.90). Furthermore, Reg IV immunoexpression had shown a negative correlation with P53 and KRAS immunoexpression in groups 4 and 5. Conclusion Higher expression of Reg IV in patients with UC-dysplasia and UC-CRC versus KRAS and P53 expression in sporadic CRC, suggests a potential role of Reg IV in UC carcinogenesis pathway. This could advocate the use of Reg IV as a screening biomarker for UC-N among patients with long-standing UC as well as a promising targeted therapeutic strategy.
Collapse
Affiliation(s)
| | - Yomna Zamzam
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta 31111, Egypt
- https://orcid.org/0000-0003-0270-3140
| | - Ayman Elsaka
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta 31111, Egypt
| | - Lamiaa Al Fadaly
- Clinical Pathology, National Cancer Institute, Cairo University, Giza 12511, Egypt
| | - Tamer Haydara
- Department of Internal Medicine, Faculty of Medicine, Kafr El Sheikh University, Kafr El-Sheikh 33511, Egypt
| | - Alaa Ibraheem Amer
- Department of Pathology, Faculty of Medicine, Tanta University, Tanta 31111, Egypt
| |
Collapse
|
10
|
Nie X, Zhang T, Huang X, Gu C, Zuo W, Fu LJ, Dong Y, Liu H. Novel therapeutic targets: bifidobacterium-mediated urea cycle regulation in colorectal cancer. Cell Biol Toxicol 2024; 40:64. [PMID: 39096436 PMCID: PMC11297826 DOI: 10.1007/s10565-024-09889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/03/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND AND PURPOSE Colorectal cancer (CRC) is a widespread malignancy with a complex and not entirely elucidated pathogenesis. This study aims to explore the role of Bifidobacterium in the urea cycle (UC) and its influence on the progression of CRC, a topic not extensively studied previously. EXPERIMENTAL APPROACH Utilizing both bioinformatics and experimental methodologies, this research involved analyzing bacterial abundance in CRC patients in comparison to healthy individuals. The study particularly focused on the abundance of BA. Additionally, transcriptomic data analysis and cellular experiments were conducted to investigate the impact of Bifidobacterium on ammonia metabolism and mitochondrial function, specifically examining its regulation of the key UC gene, ALB. KEY RESULTS The analysis revealed a significant decrease in Bifidobacterium abundance in CRC patients. Furthermore, Bifidobacterium was found to suppress ammonia metabolism and induce mitochondrial dysfunction through the regulation of the ALB gene, which is essential in the context of UC. These impacts contributed to the suppression of CRC cell proliferation, a finding corroborated by animal experimental results. CONCLUSIONS AND IMPLICATIONS This study elucidates the molecular mechanism by which Bifidobacterium impacts CRC progression, highlighting its role in regulating key metabolic pathways. These findings provide potential targets for novel therapeutic strategies in CRC treatment, emphasizing the importance of microbiota in cancer progression.
Collapse
Affiliation(s)
- Xusheng Nie
- Department of Gastroenterology, Yunyang County People's Hospital, Chongqing, 404599, China
| | - Tingting Zhang
- Department of Pediatrics, Rongchang District People's Hospital, Chongqing, 402460, China
| | - Xiumei Huang
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.3, North Guangchang Road, Changyuan Street, Rongchang District, Chongqing, 402460, China
| | - Chongqi Gu
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.3, North Guangchang Road, Changyuan Street, Rongchang District, Chongqing, 402460, China
| | - Wei Zuo
- Department of Herbal Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Li-Juan Fu
- Department of Herbal Medicine, School of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
- Department of Pharmacology, Academician Workstation, Changsha Medical University, Changsha, 410219, China
| | - Yiping Dong
- Department of Digital Medicine, Department of Bioengineering and Imaging, Army Medical University, Chongqing, 400038, China
| | - Hao Liu
- Department of Digestion, Rongchang District People's Hospital of Chongqing, No.3, North Guangchang Road, Changyuan Street, Rongchang District, Chongqing, 402460, China.
| |
Collapse
|
11
|
Ruan HX, Qin XN, Huang W, Lin L. IL-22 activates the PI3K-AKT pathway to promote colorectal cancer cell proliferation and metastasis. Discov Oncol 2024; 15:317. [PMID: 39073546 PMCID: PMC11286610 DOI: 10.1007/s12672-024-01169-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is a prevalent malignancy with high morbidity and mortality rates. Previous studies have demonstrated that interleukin (IL)-22 is involved in CRC progression; however, the exact mechanism remains unclear. This study aimed to investigate the effects of IL-22 on CRC cell proliferation and metastasis. METHODS IL-22 levels in the serum and tissues of CRC patients were measured using enzyme-linked immunosorbent assay (ELISA). Cell counting kit-8 (CCK-8) assay was used to detect the viability of CRC (HCT116) cells treated with different IL-22 concentrations. Colony formation, Transwell invasion, and scratch assays were employed to assess the effects of IL-22 on cell proliferation, invasion, and migration. Western blotting was performed to measure the expression levels of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), p-PI3K, p-AKT, E-cadherin, matrix metalloproteinase (MMP)-2, MMP-9, SNAI1, and TWIST1 in HCT116 cells treated with IL-22 or a PI3K inhibitor. RESULTS ELISA results showed that the expression of IL-22 was significantly increased in the serum and tissues of CRC patients compared to controls. IL-22 treatment increased cell viability and colony formation in a concentration-dependent manner and enhanced cell invasion and migration. Western blotting analysis revealed that IL-22 stimulation upregulated p-PI3K and p-AKT expression, while total PI3K and AKT levels remained unchanged. Additionally, IL-22 also decreased E-cadherin expression and increased the expression of MMP-2, MMP-9, SNAI1, and TWIST1. CONCLUSIONS IL-22 activates the PI3K-AKT pathway and promotes HCT116 cell proliferation and metastasis. Targeting the regulation of the PI3K/AKT pathway may be a potential therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Hong-Xun Ruan
- Department of General Surgery III, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Xiao-Ning Qin
- Department of General Surgery III, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Wei Huang
- Department of General Surgery III, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China
| | - Lin Lin
- Department of General Surgery III, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
12
|
She T, Ren S, He H, Symer M, Katz S. Ulcerative Colitis or Not? A Case of Dysplasia, Gastrointestinal Bleeding, and Juvenile Polyposis in a 27-Year-Old Man. ACG Case Rep J 2024; 11:e01450. [PMID: 39035206 PMCID: PMC11259387 DOI: 10.14309/crj.0000000000001450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Juvenile polyposis syndrome lies within the family of hamartomatous polyposis syndromes characterized by polyps that appear benign but harbor an increased risk of colorectal and gastric cancer. This 27-year-old man with severe ulcerative colitis was discovered to have concomitant juvenile polyposis syndrome during diagnostic workup for gastrointestinal bleeding. The implications of this rare association complicate both diagnostic and treatment modalities since both diseases confer an increased risk of cancer.
Collapse
Affiliation(s)
- Tianyu She
- Department of Medicine, New York University Langone Long Island, New York, NY
| | - Stephanie Ren
- Department of Medicine, New York University Langone Long Island, New York, NY
| | - Harry He
- Department of Gastroenterology, New York University Langone Long Island, New York, NY
| | - Matthew Symer
- Department of Surgery, New York University Langone Long Island, New York, NY
| | - Seymour Katz
- Division of Gastroenterology and Hepatology, New York University Langone Medical Center, New York, NY
| |
Collapse
|
13
|
Singla S, Jena G. Studies on the mechanism of local and extra-intestinal tissue manifestations in AOM-DSS-induced carcinogenesis in BALB/c mice: role of PARP-1, NLRP3, and autophagy. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4321-4337. [PMID: 38091080 DOI: 10.1007/s00210-023-02878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/28/2023] [Indexed: 05/23/2024]
Abstract
Colitis-associated colorectal cancer (CACC) is one of the devastating complications of long-term inflammatory bowel disease and is associated with substantial morbidity and mortality. Combination of azoxymethane (AOM) and dextran sulfate sodium (DSS) has been extensively used for inflammation-mediated colon tumor development due to its reproducibility, potency, histological and molecular changes, and resemblance to human CACC. In the tumor microenvironment and extra-intestinal tissues, PARP-1, NLRP3 inflammasome, and autophagy's biological functions are complicated and encompass intricate interactions between these molecular components. The focus of the present investigation is to determine the colonic and extra-intestinal tissue damage induced by AOM-DSS and related molecular mechanisms. Azoxymethane (10 mg/kg, i.p.; single injection) followed by DSS (3 cycles, 7 days per cycle) over a period of 10 weeks induced colitis-associated colon cancer in male BALB/c mice. By initiating carcinogenesis with a single injection of azoxymethane (AOM) and then establishing inflammation with dextran sulfate sodium (DSS), a two-stage murine model for CACC was developed. Biochemical parameters, ELISA, histopathological and immunohistochemical analysis, and western blotting have been performed to evaluate the colonic, hepatic, testicular and pancreatic damage. In addition, the AOM/DSS-induced damage has been assessed by analyzing the expression of a variety of molecular targets, including proliferating cell nuclear antigen (PCNA), interleukin-10 (IL-10), AMP-activated protein kinase (AMPK), poly (ADP-ribose) polymerase-1 (PARP-1), cysteine-associated protein kinase-1 (caspase-1), NLR family pyrin domain containing 3 (NLRP3), beclin-1, and interleukin-1β (IL-1β). Present findings revealed that AOM/DSS developed tumors in colon tissue followed by extra-intestinal hepatic, testicular, and pancreatic damages.
Collapse
Affiliation(s)
- Shivani Singla
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S, Nagar, Punjab, 160062, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S, Nagar, Punjab, 160062, India.
| |
Collapse
|
14
|
Tang Y, Feng X, Lu Q, Cui C, Yu M, Wen Z, Luan Y, Dong L, Hu Z, Zhang R, Lu C, Liu J, Shinkura R, Hase K, Wang JY. MZB1-mediated IgA secretion suppresses the development and progression of colorectal cancer triggered by gut inflammation. Mucosal Immunol 2024; 17:450-460. [PMID: 38101774 DOI: 10.1016/j.mucimm.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/20/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Colorectal cancer (CRC) ranks among the top causes of mortality globally. Gut inflammation is one crucial risk factor that augments CRC development since patients suffering from inflammatory bowel disease have an increased incidence of CRC. The role of immunoglobulin (Ig)A in maintaining gut homeostasis and preventing inflammation has been well established. Our earlier work demonstrated that the marginal zone and B1 cell-specific protein (MZB1) promotes gut IgA secretion and its absence results in pronounced dextran sulfate sodium salt (DSS)-induced colitis. In the present study, we explored the role of MZB1 in CRC development using the azoxymethane (AOM)/DSS-induced CRC model. We observed an increase in both the number and size of the tumor nodules in Mzb1-/- mice compared with Mzb1+/+ mice. The increase in CRC development and progression in Mzb1-/- mice was associated with reduced intestinal IgA levels, altered gut flora, and more severe gut and systemic inflammation. Oral administration of the monoclonal IgA, W27, alleviated both the gut inflammation and AOM/DSS-induced CRC. Notably, cohousing Mzb1+/+ and Mzb1-/- mice from the 10th day after birth led to similar CRC development. Our findings underscore the pivotal role of MZB1-mediated IgA secretion in suppressing the onset and progression of CRC triggered by gut inflammation. Moreover, our study highlights the profound impact of microbiota composition, modulated by gut IgA levels, on gut inflammation. Nonetheless, establishing a direct correlation between the severity of colitis and subsequent CRC development and the presence or absence of a particular microbiota is challenging.
Collapse
Affiliation(s)
- Yue Tang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaoqian Feng
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qing Lu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chaoqun Cui
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meiping Yu
- Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Zichao Wen
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yingying Luan
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lulu Dong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ziying Hu
- Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Runyun Zhang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chunhui Lu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Reiko Shinkura
- Laboratory of Immunology and Infection Control, Institute of Quantitative Biosciences, the University of Tokyo, Tokyo, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Ji-Yang Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China; Department of Clinical Immunology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Department of Microbiology and Immunology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China; Shanghai Sci-Tech Inno Center for Infection & Immunity, Shanghai 200052, China.
| |
Collapse
|
15
|
Majumder A, Bano S. How the Western Diet Thwarts the Epigenetic Efforts of Gut Microbes in Ulcerative Colitis and Its Association with Colorectal Cancer. Biomolecules 2024; 14:633. [PMID: 38927037 PMCID: PMC11201633 DOI: 10.3390/biom14060633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Ulcerative colitis (UC) is an autoimmune disease in which the immune system attacks the colon, leading to ulcer development, loss of colon function, and bloody diarrhea. The human gut ecosystem consists of almost 2000 different species of bacteria, forming a bioreactor fueled by dietary micronutrients to produce bioreactive compounds, which are absorbed by our body and signal to distant organs. Studies have shown that the Western diet, with fewer short-chain fatty acids (SCFAs), can alter the gut microbiome composition and cause the host's epigenetic reprogramming. Additionally, overproduction of H2S from the gut microbiome due to changes in diet patterns can further activate pro-inflammatory signaling pathways in UC. This review discusses how the Western diet affects the microbiome's function and alters the host's physiological homeostasis and susceptibility to UC. This article also covers the epidemiology, prognosis, pathophysiology, and current treatment strategies for UC, and how they are linked to colorectal cancer.
Collapse
Affiliation(s)
- Avisek Majumder
- Department of Medicine, University of California, San Francisco, CA 94158, USA
| | | |
Collapse
|
16
|
Chacon-Millan P, Lama S, Del Gaudio N, Gravina AG, Federico A, Pellegrino R, Luce A, Altucci L, Facchiano A, Caraglia M, Stiuso P. A Combination of Microarray-Based Profiling and Biocomputational Analysis Identified miR331-3p and hsa-let-7d-5p as Potential Biomarkers of Ulcerative Colitis Progression to Colorectal Cancer. Int J Mol Sci 2024; 25:5699. [PMID: 38891888 PMCID: PMC11171846 DOI: 10.3390/ijms25115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Accepted: 05/15/2024] [Indexed: 06/21/2024] Open
Abstract
Ulcerative colitis (UC), an inflammatory bowel disease (IBD), may increase the risk of colorectal cancer (CRC) by activating chronic proinflammatory pathways. The goal of this study was to find serum prediction biomarkers in UC to CRC development by combining low-density miRNA microarray and biocomputational approaches. The UC and CRC miRNA expression profiles were compared by low-density miRNA microarray, finding five upregulated miRNAs specific to UC progression to CRC (hsa-let-7d-5p, hsa-miR-16-5p, hsa-miR-145-5p, hsa-miR-223-5p, and hsa-miR-331-3p). The circRNA/miRNA/mRNA competitive endogenous RNA (ceRNA) network analysis showed that the candidate miRNAs were connected to well-known colitis-associated CRC ACVR2A, SOCS1, IGF2BP1, FAM126A, and CCDC85C mRNAs, and circ-SHPRH circRNA. SST and SCARA5 genes regulated by hsa-let-7d-5p, hsa-miR-145-5p, and hsa-miR-331-3p were linked to a poor survival prognosis in a CRC patient dataset from The Cancer Genome Atlas (TCGA). Lastly, our mRNA and miRNA candidates were validated by comparing their expression to differentially expressed mRNAs and miRNAs from colitis-associated CRC tissue databases. A high level of hsa-miR-331-3p and a parallel reduction in SOCS1 mRNA were found in tissue and serum. We propose hsa-miR-331-3p and possibly hsa-let-7d-5p as novel serum biomarkers for predicting UC progression to CRC. More clinical sample analysis is required for further validation.
Collapse
Affiliation(s)
- Pilar Chacon-Millan
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.-M.); (S.L.); (N.D.G.); (A.G.G.); (A.F.); (R.P.); (A.L.); (L.A.); (M.C.)
| | - Stefania Lama
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.-M.); (S.L.); (N.D.G.); (A.G.G.); (A.F.); (R.P.); (A.L.); (L.A.); (M.C.)
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.-M.); (S.L.); (N.D.G.); (A.G.G.); (A.F.); (R.P.); (A.L.); (L.A.); (M.C.)
| | - Antonietta Gerarda Gravina
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.-M.); (S.L.); (N.D.G.); (A.G.G.); (A.F.); (R.P.); (A.L.); (L.A.); (M.C.)
| | - Alessandro Federico
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.-M.); (S.L.); (N.D.G.); (A.G.G.); (A.F.); (R.P.); (A.L.); (L.A.); (M.C.)
| | - Raffaele Pellegrino
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.-M.); (S.L.); (N.D.G.); (A.G.G.); (A.F.); (R.P.); (A.L.); (L.A.); (M.C.)
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.-M.); (S.L.); (N.D.G.); (A.G.G.); (A.F.); (R.P.); (A.L.); (L.A.); (M.C.)
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.-M.); (S.L.); (N.D.G.); (A.G.G.); (A.F.); (R.P.); (A.L.); (L.A.); (M.C.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy
- Institute of Experimental Endocrinology and Oncology “Gaetano Salvatore” (IEOS)-National Research Council (CNR), Via Sergio Pansini, 80131 Naples, Italy
- Programma di Epigenetica Medica, A.O.U. “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Angelo Facchiano
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy;
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.-M.); (S.L.); (N.D.G.); (A.G.G.); (A.F.); (R.P.); (A.L.); (L.A.); (M.C.)
- Biogem Scarl, Institute of Genetic Research, Laboratory of Molecular and Precision Oncology, 83031 Ariano Irpino, Italy
- Programma di Epigenetica Medica, A.O.U. “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Paola Stiuso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (P.C.-M.); (S.L.); (N.D.G.); (A.G.G.); (A.F.); (R.P.); (A.L.); (L.A.); (M.C.)
| |
Collapse
|
17
|
Chu L, Zhang S, Wu W, Gong Y, Chen Z, Wen Y, Wang Y, Wang L. Grape seed proanthocyanidin extract alleviates inflammation in experimental colitis mice by inhibiting NF-κB signaling pathway. ENVIRONMENTAL TOXICOLOGY 2024; 39:2572-2582. [PMID: 38205677 DOI: 10.1002/tox.24129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
Ulcerative colitis (UC) is a complex inflammatory disease of colorectum that induces abnormal immune responses and severely affects the quality of life of the patients. Grape seed proanthocyanidin extract (GSPE) exerts anti-inflammatory and antioxidant functions in many inflammatory diseases. The objective of this study was to investigate the potential therapeutic effects and underlying mechanisms of GSPE in UC using a dextran sodium sulfate (DSS)-induced mouse UC model and a lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage model. In this study, we found that the GSPE markedly prevented DSS-induced weight loss and colon length shortening in UC mice. Further investigations showed that GSPE significantly attenuated the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β, and elevated the expression of anti-inflammatory cytokine IL-10 in the colon tissues and serum of DSS-induced colitis mice by suppressing NF-κB signaling pathway. Furthermore, LPS-induced inflammation in RAW264.7 cells was also reversed by GSPE. Taken together, our results confirm that GSPE can ameliorate inflammatory response in experimental colitis via inhibiting NF-κB signaling pathway. This study advances the research progress on a potentially effective therapeutic strategy for inflammatory bowel diseases.
Collapse
Affiliation(s)
- Lei Chu
- Clinical Laboratory, The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang, China
| | - Shaoru Zhang
- Clinical Laboratory, The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang, China
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Weidong Wu
- Clinical Laboratory, The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang, China
| | - Yuqing Gong
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Zhenshi Chen
- Clinical Laboratory, The People's Hospital of Danyang & Affiliated Danyang Hospital of Nantong University, Danyang, China
| | - Yanting Wen
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Lihui Wang
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
18
|
Xiang S, Jian Q, Chen W, Xu Q, Li J, Wang C, Wang R, Zhang D, Lin J, Zheng C. Pharmacodynamic components and mechanisms of ginger (Zingiber officinale) in the prevention and treatment of colorectal cancer. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117733. [PMID: 38218504 DOI: 10.1016/j.jep.2024.117733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginger is a "medicine-food homology" natural herb and has a longstanding medicinal background in treating intestinal diseases. Its remarkable bioactivities, including anti-inflammatory, antioxidant, immunoregulatory, flora regulatory, intestinal protective, and anticancer properties, make it a promising natural medicine for colorectal cancer (CRC) prevention and treatment. AIM OF THE REVIEW The purpose is to review the relevant literature on ginger and pharmacodynamic components for CRC prevention and treatment, summarize the possible mechanisms of ginger from clinical studies and animal and in vitro experiments, to provide theoretical support for the use of ginger preparations in the daily prevention and clinical treatment of CRC. MATERIALS AND METHODS Literatures about ginger and CRC were searched from electronic databases, such as PubMed, Web of Science, ScienceDirect, Google Scholar and China National Knowledge Infrastructure (CNKI). RESULTS This article summarizes the molecular mechanisms of ginger and its pharmacodynamic components in the prevention and treatment of CRC, including anti-inflammatory, antioxidant, immunoregulatory, flora regulatory, intestinal protective, inhibit CRC cell proliferation, induce CRC cell cycle blockage, promote CRC cell apoptosis, suppress CRC cell invasion and migration, enhance the anticancer effect of chemotherapeutic drugs. CONCLUSIONS Ginger has potential for daily prevention and clinical treatment of CRC.
Collapse
Affiliation(s)
- Sirui Xiang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Qin Jian
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Wu Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Qi Xu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Jia Li
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Chuchu Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Rongrong Wang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Dingkun Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Junzhi Lin
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
19
|
Pothuraju R, Khan I, Jain M, Bouvet M, Malafa M, Roy HK, Kumar S, Batra SK. Colorectal cancer murine models: Initiation to metastasis. Cancer Lett 2024; 587:216704. [PMID: 38360138 PMCID: PMC11257378 DOI: 10.1016/j.canlet.2024.216704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Despite significant advancements in prevention and treatment, colorectal cancer (CRC) remains the third leading cause of cancer-related deaths. Animal models, including xenografts, syngeneic, and genetically engineered, have emerged as indispensable tools in cancer research. These models offer a valuable platform to address critical questions regarding molecular pathogenesis and test therapeutic interventions before moving on to clinical trials. Advancements in CRC animal models have also facilitated the advent of personalized and precision medicine. Patient-derived xenografts and genetically engineered mice that mirror features of human tumors allow for tailoring treatments to specific CRC subtypes, improving treatment outcomes and quality of life. To overcome the limitations of individual model systems, recent studies have employed a multi-modal approach, combining different animal models, 3D organoids, and in vitro studies. This integrative approach provides a comprehensive understanding of CRC biology, including the tumor microenvironment and therapeutic responses, driving the development of more effective and personalized therapeutic interventions. This review discusses the animal models used for CRC research, including recent advancements and limitations of these animal models.
Collapse
Affiliation(s)
- Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 695014, Kerala, India
| | - Imran Khan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA
| | - Michael Bouvet
- Department of Surgery, University of California San Diego, California, USA
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Hemant K Roy
- Department of Medicine, Baylor College of Medicine, Houston, TX-77030, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE-68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE-68198, USA.
| |
Collapse
|
20
|
Wan Z, Zheng G, Zhang Z, Ruan Q, Wu B, Wei G. Material basis and core chemical structure of Dendrobium officinale polysaccharides against colitis-associated cancer based on anti-inflammatory activity. Int J Biol Macromol 2024; 262:130056. [PMID: 38365160 DOI: 10.1016/j.ijbiomac.2024.130056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/26/2023] [Accepted: 02/06/2024] [Indexed: 02/18/2024]
Abstract
It has been claimed that Dendrobium officinale polysaccharides (PSs) can degrade into oligosaccharide and then transform into short-chain fatty acids in the intestine after oral administration, and play an anti-colitis-associated cancer (CAC) effect by inhibiting intestinal inflammation. However, the material basis and core chemical structure underlying the anti-colon cancer properties of PSs have not yet been elucidated. In this study, PSs were degraded into enzymatic oligosaccharides (OSs) using β-mannanase. The results of in vivo experiments revealed that PSs and OSs administered by gastric lavage had similar antitumor effects in CAC mice. OS-1 (Oligosaccharide compounds 1) and OS-2 (Oligosaccharide compounds 2) were further purified and characterized from OSs, and it was found that OS-1, OS-2, OSs, and PSs had similar and consistent anti-inflammatory activities in vitro. Chemical structure comparison and evaluation revealed that the chemical structure of β-D-Manp-(1 → 4)-β-D-Glcp corresponding to OS-1 was the least common PS structure with anti-colitic activity. Therefore, our findings suggest that OSs are the material basis for PSs to exert anti-CAC activity and that the chemical structure of β-D-Manp-(1 → 4)-β-D-Glcp corresponding to OS-1 is the core chemical structure of PSs against CAC.
Collapse
Affiliation(s)
- Zhongxian Wan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Wai Huan Dong Road, Higher Education Mega Center, Panyu District, Guangzhou 511400, China; The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, No. 158 Wuyang Dadao, Enshi, Hubei 445000, China
| | - Guoyao Zheng
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, No. 158 Wuyang Dadao, Enshi, Hubei 445000, China
| | - Zixiong Zhang
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, No. 158 Wuyang Dadao, Enshi, Hubei 445000, China
| | - Qingfeng Ruan
- Department of Pharmacy, Wuhan No.1 Hospital, No. 215 Zhongshan Dadao, Qiaokou District, Wuhan, Hubei 430022, China
| | - Bo Wu
- The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, No. 158 Wuyang Dadao, Enshi, Hubei 445000, China.
| | - Gang Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, No. 232 Wai Huan Dong Road, Higher Education Mega Center, Panyu District, Guangzhou 511400, China.
| |
Collapse
|
21
|
Kaneko M, Kanatani Y, Sato H, Sano M, Teramura E, Imai J, Fujisawa M, Matsushima M, Suzuki H. Prognostic Factors in Prostate Cancer Associated with Ulcerative Colitis. J Clin Med 2024; 13:1392. [PMID: 38592255 PMCID: PMC10932459 DOI: 10.3390/jcm13051392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/17/2024] [Accepted: 02/27/2024] [Indexed: 04/10/2024] Open
Abstract
Ulcerative colitis (UC) has been associated with increased prostate cancer (PCa) risk. However, the mechanisms underlying UC and increased PCa risk remain unclear, and research on this topic is scarce in Japan. We have investigated whether UC is associated with PCa risk in the Japanese population and the risk factors related to PCa among older UC patients. This retrospective single-center cohort study was conducted between January 2010 and April 2022. A total of 68 cases were analyzed, and 9 cases of PCa were observed (13.2%). PCa occurred more frequently in the adult-onset group (8/40, 20.0%) than in the older-onset group with UC (1/28; 3.57%). No significant differences were observed between immunosuppressive therapies and PCa in patients, excluding those with pancolitis-type UC. PCa occurred more frequently in the pancolitis type, and the biologics group had no PCa cases, but the difference was not statistically significant (p = 0.07). This study suggests that pancolitis type and UC onset in middle-aged patients may be risk factors and found that biologics potentially suppress PCa development.
Collapse
Affiliation(s)
- Motoki Kaneko
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan; (M.K.); (H.S.); (M.S.)
| | - Yasuhiro Kanatani
- Department of Clinical Pharmacology, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Hirohiko Sato
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan; (M.K.); (H.S.); (M.S.)
| | - Masaya Sano
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan; (M.K.); (H.S.); (M.S.)
| | - Erika Teramura
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan; (M.K.); (H.S.); (M.S.)
| | - Jin Imai
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan; (M.K.); (H.S.); (M.S.)
- Department of Clinical Health Science, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan
| | - Mia Fujisawa
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan; (M.K.); (H.S.); (M.S.)
| | - Masashi Matsushima
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan; (M.K.); (H.S.); (M.S.)
| | - Hidekazu Suzuki
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine, Tokai University, 143 Shimokasuya, Isehara 259-1193, Japan; (M.K.); (H.S.); (M.S.)
| |
Collapse
|
22
|
Beygi M, Shayegh J, Esmaeili Gouvarchin Ghaleh H. Caffeine and naloxone treated mesenchymal stem cells improve symptoms and reduce inflammation in a mouse model of ulcerative colitis. Transpl Immunol 2024; 82:101986. [PMID: 38184213 DOI: 10.1016/j.trim.2024.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
BACKGROUND AND OBJECTIVE Ulcerative colitis (UC) causes ulcers in the colon and rectum, leading to abdominal pain, diarrhea, and rectal bleeding, and if left untreated, can lead to serious complications. The therapeutic effects of mesenchymal stem cells (MSCs) on experimental models of UC have been proven. Since the microenvironment around these cells is crucial in maintaining cell proliferation, differentiation, metabolism, and overall function, this study aims to evaluation the role of caffeine and naloxone as a new microenvironment for MSCs in reducing inflammation and improving symptoms in an experimental model of UC. MATERIAL AND METHOD A group of 40 outbred NMRI mice were studied and divided randomly into four equal groups (N = 10 each group). UC was induced in all groups using acetic acid. The first group (control) was treated with phosphate buffer saline (PBS), the second group with MSCs-Caffeine, the third with MSCs-Naloxone, and the fourth with Mesalazine. The disease activity index (DAI), tissue damage, myeloperoxidase (MPO) activity, nitric oxide (NO) levels, and the production of IL-1, IL-6, and TNF-α cytokines were evaluated. RESULT Our research demonstrated that all treatments were effective in improving the symptoms and reducing inflammatory markers in mice with colitis. Among the two MSCs treatments, the MSCs-Caffeine was found to be the most potent in reducing the levels of NO, IL-1, IL-6, tissue damage (P < 0.001) and as well as TNF-α (P < 0.0001) in compared to the control group. CONCLUSION MSCs treated with caffeine and naloxone can enhance the immunoregulatory potential of these. As a result, treated MSCs can lead to improved clinical signs and reduced inflammatory parameters in mice with UC, making this approach a useful way for controlling and treating the disease. However, additional research is needed to access the mechanism behind the stronger immune system regulatory effects of treated MSCs in UC treatment.
Collapse
Affiliation(s)
- Milad Beygi
- Department of Veterinary Medicine, Shabestar Branch, Islamic Azad University, Shabestar, Iran
| | - Jalal Shayegh
- Department of Veterinary Medicine, Shabestar Branch, Islamic Azad University, Shabestar, Iran
| | | |
Collapse
|
23
|
Liu S, Zhi Y, Zhang R, You Y, You W, Xu Q, Li J, Li J. Cronkhite‒Canada syndrome as inflammatory hamartomatous polyposis: new evidence from whole transcriptome sequencing of colonic polyps. Orphanet J Rare Dis 2024; 19:35. [PMID: 38297356 PMCID: PMC10832113 DOI: 10.1186/s13023-024-03038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Cronkhite-Canada syndrome (CCS) is a rare, nonhereditary disease characterized by diffuse gastrointestinal polyposis and ectodermal abnormalities. Although it has been proposed to be a chronic inflammatory condition, direct evidence of its pathogenesis is lacking. This study aims to investigate the pathophysiology of CCS by analyzing transcriptomic changes in the colonic microenvironment. METHODS Next-generation sequencing-based genome-wide transcriptional profiling was performed on colonic hamartomatous polyps from four CCS patients and normal colonic mucosa from four healthy volunteers. Analyses of differential expression and multiple enrichment analyses were conducted from the molecular level to the cellular level. Quantitative real-time PCR (qRT-PCR) was carried out to validate the sequencing accuracy in samples from six CCS patients and six healthy volunteers. RESULTS A total of 543 differentially expressed genes were identified, including an abundance of CC- and CXC-chemokines. Innate immune response-related pathways and processes, such as leukocyte chemotaxis, cytokine production, IL-17, TNF, IL-1 and NF-kB signaling pathways, were prominently enhanced in CCS colonic polyps. Upregulation of wound healing, epithelial-mesenchymal transition, Wnt, and PI3K-Akt signaling pathways were also observed. Enrichment analyses at different levels identified extracellular structure disorganization, dysfunction of the gut mucosal barrier, and increased angiogenesis. Validation by qRT-PCR confirmed increased expression of the LCN2, IL1B, CXCL1, and CXCL3 genes in CCS colonic polyps. CONCLUSIONS This case-control whole transcriptome analysis of active CCS colonic hamartomatous polyps revealed intricate molecular pathways, emphasizing the role of the innate immune response, extracellular matrix disorganization, inflammatory cell infiltration, increased angiogenesis, and potential epithelial to mesenchymal transition. These findings supports CCS as a chronic inflammatory condition and sheds light on potential therapeutic targets, paving the way for more effective and personalized management of CCS in the future.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Allergy, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, 100730, Beijing, People's Republic of China
| | - Yunfei Zhi
- Department of Gastroenterology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, People's Republic of China
| | - Runfeng Zhang
- Department of Internal Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, 100730, Beijing, China
| | - Yan You
- Department of Pathology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, 100730, Beijing, People's Republic of China
| | - Wen You
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, People's Republic of China
| | - Qiushi Xu
- Department of Gastroenterology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, People's Republic of China
| | - Jingnan Li
- Department of Gastroenterology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, People's Republic of China
| | - Ji Li
- Department of Gastroenterology, Chinese Academy of Medical Sciences, Peking Union Medical College Hospital, Beijing, 100730, People's Republic of China.
| |
Collapse
|
24
|
Wu Y, Fang Y, Li Y, Au R, Cheng C, Li W, Xu F, Cui Y, Zhu L, Shen H. A network pharmacology approach and experimental validation to investigate the anticancer mechanism of Qi-Qin-Hu-Chang formula against colitis-associated colorectal cancer through induction of apoptosis via JNK/p38 MAPK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117323. [PMID: 37852337 DOI: 10.1016/j.jep.2023.117323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/20/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Qi-Qin-Hu-Chang Formula (QQHCF) is a traditional Chinese medicine prescription that is clinically used at the Affiliated Hospital of Nanjing University of Chinese Medicine for the treatment of colitis-associated colorectal cancer (CAC). AIM OF THE STUDY To evaluate the potential therapeutic effects of QQHCF on a CAC mouse model and investigate its underlying mechanisms using network pharmacology and experimental validation. MATERIALS AND METHODS The active components and potential targets of QQHCF were obtained from Traditional Chinese Medicine Systems Pharmacology (TCMSP) and herb-ingredient-targets gene network were constructed by Cytoscape 3.9.2. Target genes of CAC were obtained from GeneCards, Online Mendelian Inheritance in Man, and DrugBank database. The drug disease target protein-protein interaction (PPI) network was constructed and the core targets were visualized and identified using Cytoscape. The Metascape database was used for GO and KEGG enrichment analysis. UHPLC-MS/MS was used to further identify the active compounds in QQHCF. Subsequently, the therapeutic effects and potential mechanism of QQHCF against CAC were investigated in AOM/DSS-induced CAC mouse in vivo, and HT-29 and HCT116 cells in vitro. Finally, interactions between JNK, p38, and active ingredients were assessed by molecular docking. RESULTS A total of 176 active compounds, 273 potential therapeutic targets, and 2460 CAC-related target genes were obtained. The number of common targets between QQHCF and CAC were 165. KEGG pathway analysis indicated that the MAPK signaling pathway was closely associated with CAC, which may be the potential mechanism of QQHCF against CAC. Network pharmacology and UHPLC-MS/MS analyses showed that the active compounds of QQHCF included quercetin, kaempferol, luteolin, wogonin, oxymatrine, lupanine, and baicalin. Animal experiments demonstrated that QQHCF reduced tumor load, number, and size in AOM/DSS-treated mice, and induced apoptosis in colon tissue. In vitro experiments further showed that QQHCF induced apoptosis and inhibited cell viability, migration, and invasion in HCT116 and HT-29 cells. Notably, QQHCF activated the JNK/p38 MAPK signaling pathway both in vivo and in vitro. Molecular docking analysis revealed an ability for the main components of QQHCF and JNK/p38 to bind. CONCLUSION The present study demonstrated that QQHCF could ameliorate AOM/DSS-induced CAC in mice by activating the JNK/p38 MAPK signaling pathway. These results have important implications for the development of effective treatment strategies for CAC.
Collapse
Affiliation(s)
- Yuguang Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yulai Fang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yanan Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Ryan Au
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China; Academy of Chinese Culture and Health Sciences, Oakland, CA, 94612, USA
| | - Cheng Cheng
- School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, China
| | - Weiyang Li
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Feng Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuan Cui
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China; The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lei Zhu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| | - Hong Shen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
| |
Collapse
|
25
|
Zhang H, Shi Y, Lin C, He C, Wang S, Li Q, Sun Y, Li M. Overcoming cancer risk in inflammatory bowel disease: new insights into preventive strategies and pathogenesis mechanisms including interactions of immune cells, cancer signaling pathways, and gut microbiota. Front Immunol 2024; 14:1338918. [PMID: 38288125 PMCID: PMC10822953 DOI: 10.3389/fimmu.2023.1338918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Inflammatory bowel disease (IBD), characterized primarily by gastrointestinal inflammation, predominantly manifests as Crohn's disease (CD) and ulcerative colitis (UC). It is acknowledged that Inflammation plays a significant role in cancer development and patients with IBD have an increased risk of various cancers. The progression from inflammation to carcinogenesis in IBD is a result of the interplay between immune cells, gut microbiota, and carcinogenic signaling pathways in epithelial cells. Long-term chronic inflammation can lead to the accumulation of mutations in epithelial cells and the abnormal activation of carcinogenic signaling pathways. Furthermore, Immune cells play a pivotal role in both the acute and chronic phases of IBD, contributing to the transformation from inflammation to tumorigenesis. And patients with IBD frequently exhibit dysbiosis of the intestinal microbiome. Disruption of the gut microbiota and subsequent immune dysregulation are central to the pathogenesis of both IBD and colitis associated colorectal cancer (CAC). The proactive management of inflammation combined with regular endoscopic and tumor screenings represents the most direct and effective strategy to prevent the IBD-associated cancer.
Collapse
Affiliation(s)
- Haonan Zhang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yulu Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chanchan Lin
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Chengcheng He
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Sun
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingsong Li
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
26
|
Sampaio Moura N, Schledwitz A, Alizadeh M, Patil SA, Raufman JP. Matrix metalloproteinases as biomarkers and therapeutic targets in colitis-associated cancer. Front Oncol 2024; 13:1325095. [PMID: 38288108 PMCID: PMC10824561 DOI: 10.3389/fonc.2023.1325095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Colorectal cancer (CRC) remains a major cause of morbidity and mortality. Therapeutic approaches for advanced CRC are limited and rarely provide long-term benefit. Enzymes comprising the 24-member matrix metalloproteinase (MMP) family of zinc- and calcium-dependent endopeptidases are key players in extracellular matrix degradation, a requirement for colon tumor expansion, invasion, and metastasis; hence, MMPs are an important research focus. Compared to sporadic CRC, less is known regarding the molecular mechanisms and the role of MMPs in the development and progression of colitis-associated cancer (CAC) - CRC on a background of chronic inflammatory bowel disease (IBD) - primarily ulcerative colitis and Crohn's disease. Hence, the potential of MMPs as biomarkers and therapeutic targets for CAC is uncertain. Our goal was to review data regarding the role of MMPs in the development and progression of CAC. We sought to identify promising prognostic and therapeutic opportunities and novel lines of investigation. A key observation is that since MMPs may be more active in early phases of CAC, using MMPs as biomarkers of advancing neoplasia and as potential therapeutic targets for adjuvant therapy in those with advanced stage primary CAC rather than overt metastases may yield more favorable outcomes.
Collapse
Affiliation(s)
- Natalia Sampaio Moura
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Alyssa Schledwitz
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Madeline Alizadeh
- The Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Seema A. Patil
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jean-Pierre Raufman
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, Baltimore, MD, United States
- Medical Service, Veterans Affairs Maryland Healthcare System, Baltimore, MD, United States
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD, United States
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
27
|
Miao Z, Gu M, Raza F, Zafar H, Huang J, Yang Y, Sulaiman M, Yan J, Xu Y. Isoliquiritin Ameliorates Ulcerative Colitis in Rats through Caspase 3/HMGB1/TLR4 Dependent Signaling Pathway. Curr Gene Ther 2024; 24:73-92. [PMID: 37526181 DOI: 10.2174/1566523223666230731115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023]
Abstract
BACKGROUND Isoliquiritin belongs to flavanol glycosides and has a strong antiinflammatory activity. This study sought to investigate the anti-inflammatory effect of isoliquiritin and its underlying mechanism. METHODS The inflammatory (trinitro-benzene-sulfonic acid-TNBS-induced ulcerative colitis (UC)) model was established to ascertain the effect of isoliquiritin on the caspase-3/HMGB1/TLR4 pathway in rats. We also explored its protective effect on intestinal inflammation and its underlying mechanism using the LPS-induced inflammation model of Caco-2 cells. Besides, Deseq2 was used to analyze UCassociated protein levels. RESULTS Isoliquiritin treatment significantly attenuated shortened colon length (induced by TNBS), disease activity index (DAI) score, and body weight loss in rats. A decrease in the levels of inflammatory mediators (IL-1β, I IL-4, L-6, IL-10, PGE2, and TNF-α), coupled with malondialdehyde (MDA) and superoxide dismutase (SOD), was observed in colon tissue and serum of rats after they have received isoliquiritin. Results of techniques (like western blotting, real-time PCR, immunohistochemistry, and immunofluorescence-IF) demonstrated the potential of isoliquiritin to decrease expressions of key genes in the TLR4 downstream pathways, viz., MyD88, IRAK1, TRAF6, NF-κB, p38, and JNK at mRNA and protein levels as well as inhibit HMGB1 expression, which is the upstream ligand of TLR4. Bioinformational analysis showed enteritis to be associated with a high expression of HMGB1, TLR4, and caspase-3. CONCLUSION Isoliquiritin could reduce intestinal inflammation and mucosal damage of TNBS-induced colitis in rats with a certain anti-UC effect. Meanwhile, isoliquiritin treatment also inhibited the expression of HMGB1, TLR4, and MyD88 in LPS-induced Caco-2 cells. These results indicated that isoliquiritin could ameliorate UC through the caspase-3/HMGB1/TLR4-dependent signaling pathway.
Collapse
Affiliation(s)
- Zhiwei Miao
- Department of Gastroenterology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Mingjia Gu
- Department of Nephrology, Changshu Hospital Affiliated to Nanjing University of Chinese medicine, Changshu, 215500, China
| | - Faisal Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hajra Zafar
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianyi Huang
- Taizhou Hospital of Traditional Chinese Medicine, Taizhou, 318000, China
| | - Yuhang Yang
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | | | - Jing Yan
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Yi Xu
- Department of Gastroenterology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210000, China
| |
Collapse
|
28
|
Li L, Liu H, Yu J, Sun Z, Jiang M, Yu H, Wang C. Intestinal Microbiota and Metabolomics Reveal the Role of Auricularia delicate in Regulating Colitis-Associated Colorectal Cancer. Nutrients 2023; 15:5011. [PMID: 38068869 PMCID: PMC10708550 DOI: 10.3390/nu15235011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The edible fungus Auricularia delicate (ADe) is commonly employed in traditional medicine for intestinal disorders; however, its inhibitory effect on colitis-associated colorectal cancer (CAC) and the underlying mechanisms remain unexplored. (2) Methods: The inhibitory effect of ADe on CAC was investigated using a mouse model induced by azoxymethane/dextran sulfate sodium. RESULTS ADe effectively suppressed the growth and number of intestinal tumors in mice. Intestinal microbiota analyses revealed that ADe treatment increased Akkermansia and Parabacteroides while it decreased Clostridium, Turicibacter, Oscillospira, and Desulfovibrio. ADe regulated the levels of 2'-deoxyridine, creatinine, 1-palmitoyl lysophosphatidylcholine, and choline in serum. Furthermore, the levels of these metabolites were associated with the abundance of Oscillospira and Paraacteroides. ADe up-regulated the free fatty acid receptor 2 and β-Arrestin 2, inhibited the nuclear factor kappa B (NF-κB) pathway, and significantly attenuated the levels of inflammatory cytokines, thereby mitigating the inflammatory in CAC mice. CONCLUSIONS The protective effect of ADe in CAC mice is associated with the regulation of intestinal microbiota, which leads to the inhibition of NF-kB pathway and regulation of inflammation.
Collapse
Affiliation(s)
- Lanzhou Li
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Honghan Liu
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Jinqi Yu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
| | - Zhen Sun
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
- School of Life Sciences, Jilin University, Changchun 130012, China;
| | - Ming Jiang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang 157011, China;
| | - Han Yu
- College of Agriculture, Jilin Agricultural University, Changchun 130118, China
| | - Chunyue Wang
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun 130118, China; (L.L.); (J.Y.); (Z.S.)
- School of Life Sciences, Jilin University, Changchun 130012, China;
| |
Collapse
|
29
|
McDonald SJ, Bullard BM, VanderVeen BN, Cardaci TD, Huss AR, Fan D, Hofseth LJ, Murphy EA. Panaxynol alleviates colorectal cancer in a murine model via suppressing macrophages and inflammation. Am J Physiol Gastrointest Liver Physiol 2023; 325:G318-G333. [PMID: 37489869 PMCID: PMC10642997 DOI: 10.1152/ajpgi.00119.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Currently available colorectal cancer (CRC) therapies have limited efficacy and severe adverse effects that may be overcome with the alternative use of natural compounds. We previously reported that panaxynol (PA), a bioactive component in American ginseng, possesses anticancer properties in vitro and suppresses murine colitis through its proapoptotic and anti-inflammatory properties. Because colitis is a predisposing factor of CRC and inflammation is a major driver of CRC, we sought to evaluate the therapeutic potential of PA in CRC. Azoxymethane-dextran sodium sulfate (AOM/DSS) mice (C57BL/6) were administered 2.5 mg/kg PA or vehicle 3 times/wk via oral gavage over 12 wk. PA improved clinical symptoms (P ≤ 0.05) and reduced tumorigenesis (P ≤ 0.05). This improvement may be reflective of PA's restorative effect on intestinal barrier function; PA upregulated the expression of essential tight junction and mucin genes (P ≤ 0.05) and increased the abundance of mucin-producing goblet cells (P ≤ 0.05). Given that macrophages play a substantial role in the pathogenesis of CRC and that we previously demonstrated that PA targets macrophages in colitis, we next assessed macrophages. We show that PA reduces the relative abundance of colonic macrophages within the lamina propria (P ≤ 0.05), and this was consistent with a reduction in the expression of important markers of macrophages and inflammation (P ≤ 0.05). We further confirmed PA's inhibitory effects on macrophages in vitro under CRC conditions (P ≤ 0.05). These results suggest that PA is a promising therapeutic compound to treat CRC and improve clinical symptoms given its ability to inhibit macrophages and modulate the inflammatory environment in the colon.NEW & NOTEWORTHY We report that panaxynol (PA) reduces colorectal cancer (CRC) by improving the colonic and tumor environment. Specifically, we demonstrate that PA improves crypt morphology, upregulates crucial tight junction and mucin genes, and promotes the abundance of mucin-producing goblet cells. Furthermore, PA reduces macrophages and associated inflammation, important drivers of CRC, in the colonic environment. This present study provides novel insights into the potential of PA as a therapeutic agent to ameliorate CRC tumorigenesis.
Collapse
Affiliation(s)
- Sierra J McDonald
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Brooke M Bullard
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Brandon N VanderVeen
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Thomas D Cardaci
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Alexander R Huss
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Daping Fan
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| | - Lorne J Hofseth
- Department of Drug Discovery and Biomedical Sciences, University of South Carolina College of Pharmacy, Columbia, South Carolina, United States
| | - E Angela Murphy
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, South Carolina, United States
| |
Collapse
|
30
|
Ionescu VA, Gheorghe G, Bacalbasa N, Chiotoroiu AL, Diaconu C. Colorectal Cancer: From Risk Factors to Oncogenesis. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1646. [PMID: 37763765 PMCID: PMC10537191 DOI: 10.3390/medicina59091646] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023]
Abstract
Colorectal cancer is the second leading cause of cancer-related mortality worldwide. Numerous pathophysiological mechanisms, such as abnormal cell proliferation, cell differentiation, resistance to apoptosis, invasion of structures adjacent to colorectal tumor cells, and distant metastasis, are involved in colorectal carcinogenesis. These processes are initiated by the complex interaction of a number of genetic and environmental factors, including sedentary lifestyle, obesity, alcohol consumption, smoking, or gut microbiota. Despite the significant progress achieved in the diagnostic and therapeutic management of patients with colorectal cancer, there has been recently a noteworthy increase in the incidence of colorectal cancer in individuals below the age of 50 years. Early-onset colorectal cancer has a different frequency of oncogenic mutations, a higher prevalence of mucinous histology, a distinct deoxyribonucleic acid (DNA) methylation profile, a more distal location, and lower survival rates. A significant improvement in the prognosis of these patients can be achieved through the detection and removal of modifiable risk factors, along with the implementation of personalized screening strategies for individuals at high risk for this malignancy. Furthermore, gaining comprehension of the pathophysiological mechanisms by which these risk factors contribute to the process of oncogenesis may facilitate the discovery of novel therapeutic targets.
Collapse
Affiliation(s)
- Vlad Alexandru Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (N.B.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
- Department of Cellular and Mollecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania
| | - Gina Gheorghe
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (N.B.)
- Department of Cellular and Mollecular Pathology, Stefan S. Nicolau Institute of Virology, Romanian Academy, 030304 Bucharest, Romania
- Gastroenterology Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Nicolae Bacalbasa
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (N.B.)
- Department of Visceral Surgery, Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | | | - Camelia Diaconu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania; (V.A.I.); (N.B.)
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
- Academy of Romanian Scientists, 050085 Bucharest, Romania
| |
Collapse
|
31
|
Prathivadi Bhayankaram K, Meyer J, Sebastian B, Davies J, Wheeler J. Long-Term Surgical Outcomes and Pathological Analysis of Proctectomy Specimens after Subtotal Colectomy for Ulcerative Colitis: A Retrospective Cohort Study from a Tertiary Centre. J Clin Med 2023; 12:5729. [PMID: 37685796 PMCID: PMC10488829 DOI: 10.3390/jcm12175729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Background: Reconstruction techniques after subtotal colectomy (STC) and end ileostomy for ulcerative colitis (UC), include ileal pouch-anal anastomosis (IPAA), ileorectal anastomosis (IRA) and continent ileostomy. Aim: To assess surgical strategies and outcomes after subtotal colectomy for UC by calculating the proportions of patients who had further surgery 10 years post-STC and those who did not undergo surgery but who were under surveillance, and histological analysis of pathology specimens from STC and proctectomy. Methods: Patients who had STC for UC from 2002 to 2018 were identified. Variables of interest were extracted from electronic records. Survival analysis on reconstruction surgery was performed using Kaplan-Meier curves. Curves were censored for loss from follow-up and death. Subtotal colectomy and proctectomy specimens were assessed by a pathologist for acute inflammation at the distal resection margin and within the resected bowel, and for dysplasia or cancer. Results: One hundred and ninety-two patients were included. Eighty-nine (46.3%) underwent proctectomy: eight had panproctocolectomy; thirty had completion proctectomy and the remaining fifty-one of the eighty-nine patients (27%) had IPAA. One patient who did not undergo a proctectomy had an ileorectal anastomosis. Sixty-one (69%) proctectomy specimens had active inflammation, with 29 (48%) including the resection margins. Of the 103 patients who did not have completion surgery, 72 (69%) were under surveillance as of August 2021. No patients in this non-operative group had developed cancer of the residual rectum at follow up. Conclusions: At 10 years after STC for UC, eighty-nine (46.4%) patients had proctectomy, of which fifty-two had IPAA (27%). However, no inflammation was found in the proctectomy specimen in one third of these patients. Therefore, it is possible that IRA may still have a role in the occasional patient with UC.
Collapse
Affiliation(s)
- Kethaki Prathivadi Bhayankaram
- Cambridge Colorectal Unit, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK; (K.P.B.)
- West Suffolk Hospital NHS Foundation Trust, Bury St Edmunds IP33 2QZ, UK
| | - Jeremy Meyer
- Cambridge Colorectal Unit, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK; (K.P.B.)
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland
- Medical School, University of Geneva, 1206 Geneva, Switzerland
| | - Boby Sebastian
- West Suffolk Hospital NHS Foundation Trust, Bury St Edmunds IP33 2QZ, UK
| | - Justin Davies
- Cambridge Colorectal Unit, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK; (K.P.B.)
| | - James Wheeler
- Cambridge Colorectal Unit, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK; (K.P.B.)
| |
Collapse
|
32
|
Aust DE, Baretton GB, Sommer U. [Ulcerative colitis-associated carcinogenesis : An update]. PATHOLOGIE (HEIDELBERG, GERMANY) 2023; 44:294-300. [PMID: 37311872 DOI: 10.1007/s00292-023-01207-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/15/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease beginning in the rectum and gradually extending to the right-sided colon and the terminal ileum (backwash-ileitis). Its causes are still not completely understood. Genetic susceptibility, changes in the microbiota and immune response, as well as environmental factors are thought to influence the disease course.Patients with UC are at increased risk of developing colorectal cancer (CRC) when compared to an age-matched normal population. Cancer risk increases with early onset, duration, and extent of the disease, with development of strictures, intraepithelial neoplasia, and concomitant primary sclerosing cholangitis.In contrast to the sporadic adenoma-carcinoma-sequence, UC-related CRC develops through an inflammation-intraepithelial neoplasia-carcinoma-sequence, in which genetic alterations already occur in the inflamed epithelium before the development of intraepithelial neoplasia.This article summarizes the current state of knowledge regarding UC-related carcinogenesis and its possible impact on prevention and therapy.
Collapse
Affiliation(s)
- Daniela E Aust
- Institut für Pathologie, Universitätsklinikum Carl Gustav Carus Dresden an der TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland.
| | - Gustavo B Baretton
- Institut für Pathologie, Universitätsklinikum Carl Gustav Carus Dresden an der TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
| | - Ulrich Sommer
- Institut für Pathologie, Universitätsklinikum Carl Gustav Carus Dresden an der TU Dresden, Fetscherstr. 74, 01307, Dresden, Deutschland
| |
Collapse
|
33
|
Sato Y, Tsujinaka S, Miura T, Kitamura Y, Suzuki H, Shibata C. Inflammatory Bowel Disease and Colorectal Cancer: Epidemiology, Etiology, Surveillance, and Management. Cancers (Basel) 2023; 15:4154. [PMID: 37627182 PMCID: PMC10452690 DOI: 10.3390/cancers15164154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/13/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Patients with inflammatory bowel diseases (IBDs), such as ulcerative colitis and Crohn's disease, have an increased risk of developing colorectal cancer (CRC). Although advancements in endoscopic imaging techniques, integrated surveillance programs, and improved medical therapies have contributed to a decreased incidence of CRC in patients with IBD, the rate of CRC remains higher in patients with IBD than in individuals without chronic colitis. Patients with IBD-related CRCs exhibit a poorer prognosis than those with sporadic CRCs, owing to their aggressive histological characteristics and lower curative resection rate. In this review, we present an updated overview of the epidemiology, etiology, risk factors, surveillance strategies, treatment recommendations, and prognosis of IBD-related CRCs.
Collapse
Affiliation(s)
| | - Shingo Tsujinaka
- Division of Gastroenterological Surgery, Department of Surgery, Tohoku Medical and Pharmaceutical University, Sendai 983-8536, Japan
| | | | | | | | | |
Collapse
|
34
|
Biamonte P, D’Amico F, Fasulo E, Barà R, Bernardi F, Allocca M, Zilli A, Danese S, Furfaro F. New Technologies in Digestive Endoscopy for Ulcerative Colitis Patients. Biomedicines 2023; 11:2139. [PMID: 37626636 PMCID: PMC10452412 DOI: 10.3390/biomedicines11082139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease primarily affecting the colon and rectum. Endoscopy plays a crucial role in the diagnosis and management of UC. Recent advancements in endoscopic technology, including chromoendoscopy, confocal laser endomicroscopy, endocytoscopy and the use of artificial intelligence, have revolutionized the assessment and treatment of UC patients. These innovative techniques enable early detection of dysplasia and cancer, more precise characterization of disease extent and severity and more targeted biopsies, leading to improved diagnosis and disease monitoring. Furthermore, these advancements have significant implications for therapeutic decision making, empowering clinicians to carefully consider a range of treatment options, including pharmacological therapies, endoscopic interventions and surgical approaches. In this review, we provide an overview of the latest endoscopic technologies and their applications for diagnosing and monitoring UC. We also discuss their impact on treatment decision making, highlighting the potential benefits and limitations of each technique.
Collapse
Affiliation(s)
- Paolo Biamonte
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Ferdinando D’Amico
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20090 Milan, Italy
| | - Ernesto Fasulo
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Rukaia Barà
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Francesca Bernardi
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Mariangela Allocca
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Alessandra Zilli
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
- Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Federica Furfaro
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, 20132 Milan, Italy; (P.B.); (E.F.); (R.B.); (F.B.); (M.A.); (A.Z.); (S.D.); (F.F.)
| |
Collapse
|
35
|
Chen C, Lan B, Xie G, Liu Z. Analysis and identification of ferroptosis-related genes in ulcerative colitis. Scand J Gastroenterol 2023; 58:1422-1433. [PMID: 37530128 DOI: 10.1080/00365521.2023.2240927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Previous studies have shown that ferroptosis is associated with the pathogenesis of ulcerative colitis (UC). Therefore, this study aimed to identify key ferroptosis-related genes (FRGs) associated with the diagnosis of UC. METHODS UC-related expression datasets were downloaded from the Gene Expression Omnibus (GEO) database. First, Weighted Gene Co-expression Network Analysis (WGCNA) was used to identify UC-related genes (UCRGs). Differentially expressed genes (DEGs) between normal and UC groups were screened in GSE87466, and DEGs were subjected to an intersection analysis with FRGs and UCRGs to obtain ferroptosis-related DEGs (FR DEGs). Then a protein-protein interaction (PPI) network was constructed for FR DEGs. The hub genes were extracted based on the degree, Maximum Neighborhood Component (MNC), closeness, and Maximal Clique Centrality (MCC). Biomarkers with diagnostic values were screened by support vector machine (SVM) and the least absolute shrinkage and selection operator (LASSO) algorithms. Next, the infiltration of immune cells was compared between UC and normal groups, and the correlation between different immune cells and diagnostic genes was analyzed. The biological functions, classical pathways, and intermolecular interaction networks of diagnostic genes were characterized utilizing ingenuity pathway analysis (IPA). Finally, a TF-mRNA network was constructed and potential small-molecule compounds were screened. RESULTS Thirty-six FR DEGs were obtained, and these were enriched in biological processes such as positive regulation of cytokine production, cytokine-mediated signalling pathway, long-chain fatty acid-CoA ligase activity, etc. Among 18 hub genes, five genes (ALOX5, TIMP1, TNFAIP3, SOCS1, DUOX2) were captured with diagnostic values for UC, and they displayed significant differences between UC and normal groups. Sixteen immune cell infiltrates were significantly different between UC and normal groups, such as activated dendritic cells and resting dendritic cells. TNFAIP3 and ALOX5 were positively correlated with neutrophils, and TIMP1, SOCS1, ALOX5, and DUOX2 were negatively correlated with M2 macrophages. IPA showed that diagnostic genes were related to 43 function modules and activated 17 pathways. The constructed TF-mRNA regulatory network comprised three diagnostic genes and 17 differentially expressed TFs. Potential small-molecule compounds including helveticoside and cymarin were identified. CONCLUSION Our findings yielded several promising FRGs for UC, providing a scientific reference for further studies on the pathogenesis of UC.
Collapse
Affiliation(s)
- Chen Chen
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, P.R. China
| | - Bo Lan
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, P.R. China
| | - Guanghong Xie
- Department of Emergency Internal Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, P.R. China
| | - Zhaoyang Liu
- Department of Emergency Internal Medicine, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, P.R. China
| |
Collapse
|
36
|
Qin N, Meng Y, Ma Z, Li Z, Hu Z, Zhang C, Chen L. Pea Starch-Lauric Acid Complex Alleviates Dextran Sulfate Sodium-Induced Colitis in C57BL/6J Mice. Nutr Cancer 2023; 75:1673-1686. [PMID: 37334819 DOI: 10.1080/01635581.2023.2223789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
The previous documentation has shown the role of resistant starch in promoting intestinal health, while the effect of starch-lipid complex (RS5) on colitis remains unclear. This study aimed to investigate the effect and potential mechanism of RS5 in colitis. We prepared RS5 complexes by combining pea starch with lauric acid. Mice with dextran sulfate sodium-induced colitis were treated with either RS5 (3.25 g/kg) or normal saline (10 mL/kg) for seven days, and the effects of pea starch-lauric acid complex on mice were observed. The RS5 treatment significantly attenuated weight loss, splenomegaly, colon shortening, and pathological damage in mice with colitis. Compare with the DSS group, cytokines levels, such as tumor necrosis factor-α and interleukin-6 in both serum and colon tissue was significantly decreased in RS5 treatment group, while the gene expression of interleukin-10 and the expression of mucin 2, zonula occludens-1, Occludin, and claudin-1 in the colon was significantly upregulated in RS5 treatment group. In addition, RS5 treatment altered the gut microbiota structure of colitis mice by increasing the abundance of Bacteroides and decreasing Turicibacter, Oscillospira, Odoribacter, and Akkermansia. The dietary composition could be exploited to manage colitis by attenuating inflammation, restoring the intestinal barrier, and regulating gut microbiota.
Collapse
Affiliation(s)
- Nina Qin
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Meng
- Department of Nutrition, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhihua Ma
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Zhaoping Li
- Department of Nutrition, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhenzhen Hu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chenyi Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liyong Chen
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Nutrition, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
37
|
Ma SB, Liu L, Li X, Xie YH, Shi XP, Wang SW. Virtual screening-molecular docking-activity evaluation of Ailanthus altissima (Mill.) swingle bark in the treatment of ulcerative colitis. BMC Complement Med Ther 2023; 23:197. [PMID: 37322476 DOI: 10.1186/s12906-023-03991-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/06/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND The dried bark of Ailanthus altissima (Mill.) Swingle is widely used in traditional Chinese medicine for the treatment of ulcerative colitis. The objective of this study was to explore the therapeutic basis of the dried bark of Ailanthus altissima (Mill.) Swingle for the treatment of ulcerative colitis based on Virtual Screening-Molecular Docking-Activity Evaluation technology. METHODS By searching the Traditional Chinese Medicine Systems Pharmacology TCMSP Database and Analysis Platform, 89 compounds were obtained from the chemical components of the dried bark of Ailanthus altissima (Mill.) Swingle. Then, after preliminarily screening the compounds based on Lipinski's rule of five and other relevant conditions, the AutoDock Vina molecular docking software was used to evaluate the affinity of the compounds to ulcerative colitis-related target proteins and their binding modes through use of the scoring function to identify the best candidate compounds. Further verification of the compound's properties was achieved through in vitro experiments. RESULTS Twenty-two compounds obtained from the secondary screening were molecularly docked with ulcerative colitis-related target proteins (IL-1R, TLR, EGFR, TGFR, and Wnt) using AutoDock Vina. The free energies of the highest scoring compounds binding to the active cavity of human IL-1R, TLR, EGFR, TGFR, and Wnt proteins were - 8.7, - 8.0, - 9.2, - 7.7, and - 8.5 kcal/mol, respectively. The potential compounds, dehydrocrebanine, ailanthone, and kaempferol, were obtained through scoring function and docking mode analysis. Furthermore, the potential compound ailanthone (1, 3, and 10 µM) was found to have no significant effect on cell proliferation, though at 10 µM it reduced the level of pro-inflammatory factors caused by lipopolysaccharide. CONCLUSION Among the active components of the dried bark of Ailanthus altissima (Mill.) Swingle, ailanthone plays a major role in its anti-inflammatory properties. The present study shows that ailanthone has advantages in cell proliferation and in inhibiting of inflammation, but further animal research is needed to confirm its pharmaceutical potential.
Collapse
Affiliation(s)
- Shan-Bo Ma
- The College of Life Sciences, Northwest University, 229 Taibai Road, Xi'an, 710069, Shaanxi, China
| | - Lun Liu
- The College of Life Sciences, Northwest University, 229 Taibai Road, Xi'an, 710069, Shaanxi, China
| | - Xiang Li
- The College of Life Sciences, Northwest University, 229 Taibai Road, Xi'an, 710069, Shaanxi, China
| | - Yan-Hua Xie
- The College of Life Sciences, Northwest University, 229 Taibai Road, Xi'an, 710069, Shaanxi, China
| | - Xiao-Peng Shi
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| | - Si-Wang Wang
- The College of Life Sciences, Northwest University, 229 Taibai Road, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
38
|
Maleki H, Doostan M, Farzaei MH, Seifi P, Miraghaee S, Doostan M. Achillea wilhelmsii-Incorporated Chitosan@Eudragit Nanoparticles Intended for Enhanced Ulcerative Colitis Treatment. AAPS PharmSciTech 2023; 24:112. [PMID: 37118443 DOI: 10.1208/s12249-023-02568-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/15/2023] [Indexed: 04/30/2023] Open
Abstract
Achillea wilhelmsii (A. wilhelmsii) contains several therapeutic phytochemicals, proposing a protective effect on inflammatory responses in autoimmune diseases such as ulcerative colitis (UC). However, its activities against UC encounter multiple obstacles. The current study aimed to formulate a colon-specific delivery of A. wilhelmsii for treating UC using chitosan nanoparticles (NPs) and Eudragit S100 as a mucoadhesive and pH-sensitive polymer, respectively. Core chitosan NP was loaded with A. wilhelmsii extract, followed by coating with Eudragit S100. Then, physicochemical characterizations of prepared NPs were conducted, and the anti-UC activity in the rat model was evaluated. The relevant physicochemical characterizations indicated the spherical NPs with an average particle size of 305 ± 34 nm and high encapsulation efficiency (88.6 ± 7.3%). The FTIR (Fourier transform infrared) analysis revealed the Eudragit coating and the extract loading, as well as the high radical scavenging ability of A. wilhelmsii was confirmed. The loaded NPs prevented the extract release in an acidic pH-mimicking medium and presented a complete release thereafter at a colonic pH. The loaded NPs markedly mitigated the induced UC lesions in rats, reflected by reducing inflammation, ulcer severity, and UC-related symptoms. Further, histopathological analysis exhibited reducing the extent of the inflammation and damage to colon tissue, and the determination of the involved pro-inflammatory cytokines in serum showed a significant reduction relative to free extract. The present results show that chitosan NPs containing A. wilhelmsii extract coated with Eudragit having proper physicochemical properties and substantial anti-inflammatory activity can significantly improve colonic lesions caused by UC.
Collapse
Affiliation(s)
- Hassan Maleki
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy School, Kermanshah University of Medical Sciences, Daneshgah Street, PO Box: 67145-1673, Kermanshah, 6734667149, Iran.
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Maryam Doostan
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy School, Kermanshah University of Medical Sciences, Daneshgah Street, PO Box: 67145-1673, Kermanshah, 6734667149, Iran
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy School, Kermanshah University of Medical Sciences, Daneshgah Street, PO Box: 67145-1673, Kermanshah, 6734667149, Iran
| | - Parisa Seifi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy School, Kermanshah University of Medical Sciences, Daneshgah Street, PO Box: 67145-1673, Kermanshah, 6734667149, Iran
| | - Shahram Miraghaee
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahtab Doostan
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
39
|
Eder P, Łodyga M, Gawron-Kiszka M, Dobrowolska A, Gonciarz M, Hartleb M, Kłopocka M, Małecka-Wojciesko E, Radwan P, Reguła J, Zagórowicz E, Banasiewicz T, Durlik M, Rydzewska G. Guidelines for the management of ulcerative colitis. Recommendations of the Polish Society of Gastroenterology and the Polish National Consultant in Gastroenterology. PRZEGLAD GASTROENTEROLOGICZNY 2023; 18:1-42. [PMID: 37007752 PMCID: PMC10050986 DOI: 10.5114/pg.2023.125882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/17/2023]
Abstract
This paper is an update of the diagnostic and therapeutic recommendations of the National Consultant for Gastroenterology and the Polish Society of Gastroenterology from 2013. It contains 49 recommendations for the diagnosis and treatment, both pharmacological and surgical, of ulcerative colitis in adults. The guidelines were developed by a group of experts appointed by the Polish Society of Gastroenterology and the National Consultant in the field of Gastroenterology. The methodology related to the GRADE methodology was used to assess the quality of available evidence and the strength of therapeutic recommendations. The degree of expert support for the proposed statements was assessed on a 6-point Likert scale. Voting results, together with comments, are included with each statement.
Collapse
Affiliation(s)
- Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, Poznan University Clinical Hospital, Poznan, Poland
| | - Michał Łodyga
- Department of Internal Medicine, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Magdalena Gawron-Kiszka
- Department of Gastroenterology and Hepatology, Medical University of Silesia, Katowice, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, Poznan University Clinical Hospital, Poznan, Poland
| | - Maciej Gonciarz
- Department of Gastroenterology and Internal Medicine, Military Institute of Medicine, Warsaw, Poland
| | - Marek Hartleb
- Department of Gastroenterology and Hepatology, Medical University of Silesia, Katowice, Poland
| | - Maria Kłopocka
- Department of Gastroenterology and Nutrition Disorders, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | | | - Piotr Radwan
- Chair and Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, Lublin, Poland
| | - Jarosław Reguła
- Department of Oncological Gastroenterology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Edyta Zagórowicz
- Department of Oncological Gastroenterology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, Warsaw, Poland
| | - Tomasz Banasiewicz
- Department of General, Endocrinological and Gastroenterological Oncology Surgery, Poznan University of Medical Sciences, Poznan University Clinical Hospital, Poznan, Poland
| | - Marek Durlik
- Department of Gastroenterological Surgery and Transplantology, National Medical Institute of Ministry of Inferior and Administration, Warsaw, Poland
| | - Grażyna Rydzewska
- Department of Gastroenterology with the Inflammatory Bowel Disease Subdivision, National Medical Institute of Ministry of Inferior and Administration, Warsaw, Poland
- Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
40
|
Yang C, Wang W, Li S, Qiao Z, Ma X, Yang M, Zhang J, Cao L, Yao S, Yang Z, Wang W. Identification of cuproptosis hub genes contributing to the immune microenvironment in ulcerative colitis using bioinformatic analysis and experimental verification. Front Immunol 2023; 14:1113385. [PMID: 36960059 PMCID: PMC10028083 DOI: 10.3389/fimmu.2023.1113385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Instruction Ulcerative colitis (UC) can cause a variety of immune-mediated intestinal dysfunctions and is a significant model of inflammatory bowel disease (IBD). Colorectal cancer (CRC) mostly occurs in patients with ulcerative colitis. Cuproptosis is a type of procedural death that is associated with different types of diseases to various degrees. Methods We used a combination of bioinformatic prediction and experimental verification to study the correlation between copper poisoning and UC. We used the Gene Expression Omnibus database to obtain disease gene expression data and then identified relevant genes involved in various expression levels in normal and UC samples. The Kyoto Encyclopedia of Genes and Genomes pathway analysis was performed to cluster the genes that are highly responsible and find the central interaction in gene crosstalk. Notably, DLD, DLAT, and PDHA1 were present in high-scoring PPI networks. In addition, hub gene expression information in UC tissues was integrated to estimate the relationship between UC copper poisoning and the immune environment. Results In our study, the expression of DLD, DLAT, and PDHA1 in UC tissues was lower than that in normal tissues. The key genes associated with cuproptosis have therapeutic effects on immune infiltration. We verified the expression of DLD, DLAT, and PDHA1 using real-time quantitative polymerase chain reaction in mouse models of UC induced by DSS. Discussion Notably, this study clearly indicates that bioinformatic analysis performed to verify the experimental methods provides evidence that cuproptosis is associated with UC. This finding suggests that immune cell infiltration in UC patients is associated with cuproptosis. The key genes associated with cuproptosis can be helpful for discovering the molecular mechanism of UC, thus facilitating the improvement of UC treatment and preventing the associated CRC.
Collapse
Affiliation(s)
- Cejun Yang
- The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wendi Wang
- College of Life Science, Liaoning University, Shenyang, China
| | - Sang Li
- Department of Research, Engineering and Technology Research Center for Xenotransplantation of Human Province, Changsha, China
| | - Zhengkang Qiao
- College of Life Science, Liaoning University, Shenyang, China
| | - Xiaoqian Ma
- The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Min Yang
- The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Juan Zhang
- The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Lu Cao
- The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shanhu Yao
- The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhe Yang
- College of Life Science, Liaoning University, Shenyang, China
| | - Wei Wang
- The Institute for Cell Transplantation and Gene Therapy, The Third Xiangya Hospital of Central South University, Changsha, China
- Department of Radiology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
41
|
Chang C, Cai R, Wu Q, Su Q. Uncovering the Genetic Link between Acute Myocardial Infarction and Ulcerative Colitis Co-Morbidity through a Systems Biology Approach. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2023; 8. [DOI: 10.15212/cvia.2023.0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Background: Cardiovascular diseases, particularly acute myocardial infarction, are the leading cause of disability and death. Atherosclerosis, the pathological basis of AMI, can be accelerated by chronic inflammation. Ulcerative colitis (UC), a chronic inflammatory disease associated with immunity, contributes to the risk of AMI development. However, controversy continues to surround the relationship between these two diseases. The present study unravels the pathogenesis of AMI and UC, to provide a new perspective on the clinical management of patients with these comorbidities.
Methods: Microarray datasets GSE66360 and GSE87473 were downloaded from the Gene Expression Omnibus database. Common differentially expressed genes (co-DEGs) between AMI and UC were identified, and the following analyses were performed: enrichment analysis, protein-protein interaction network construction, hub gene identification and co-expression analysis.
Results: A total of 267 co-DEGs (233 upregulated and 34 downregulated) were screened for further analysis. GO enrichment analysis suggested important roles of chemokines and cytokines in AMI and UC. In addition, the lipopolysaccharide-mediated signaling pathway was found to be closely associated with both diseases. KEGG enrichment analysis revealed that lipid and atherosclerosis, NF-κB, TNF and IL-17 signaling pathways are the core mechanisms involved in the progression of both diseases. Finally, 11 hub genes were identified with cytoHubba: TNF, IL1B, TLR2, CXCL8, STAT3, MMP9, ITGAX, CCL4, CSF1R, ICAM1 and CXCL1.
Conclusion: This study reveals a co-pathogenesis mechanism of AMI and UC regulated by specific hub genes, thus providing ideas for further mechanistic studies, and new perspectives on the clinical management of patients with these comorbidities.
Collapse
|