1
|
Mohseni A, Ghotbi E, Kazemi F, Shababi A, Jahan SC, Mohseni A, Shababi N. Artificial Intelligence in Radiology: What Is Its True Role at Present, and Where Is the Evidence? Radiol Clin North Am 2024; 62:935-947. [PMID: 39393852 DOI: 10.1016/j.rcl.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
The integration of artificial intelligence (AI) in radiology has brought about substantial advancements and transformative potential in diagnostic imaging practices. This study presents an overview of the current research on the application of AI in radiology, highlighting key insights from recent studies and surveys. These recent studies have explored the expected impact of AI, encompassing machine learning and deep learning, on the work volume of diagnostic radiologists. The present and future role of AI in radiology holds great promise for enhancing diagnostic capabilities, improving workflow efficiency, and ultimately, advancing patient care.
Collapse
Affiliation(s)
- Alireza Mohseni
- Johns Hopkins University School of Medicine, 600 N. Wolfe Street / Phipps 446, Baltimore, MD 21287, USA.
| | - Elena Ghotbi
- Johns Hopkins University School of Medicine, 600 N. Wolfe Street / Phipps 446, Baltimore, MD 21287, USA
| | - Foad Kazemi
- Johns Hopkins University School of Medicine, 600 N. Wolfe Street / Phipps 446, Baltimore, MD 21287, USA
| | - Amirali Shababi
- School of Medicine, Iran University of Medical Sciences, Hemat Highway next to Milad Tower 14535, Tehran, Iran
| | - Shayan Chashm Jahan
- Department of Computer Science, University of Maryland, 8125 Paint Branch Drive College Park, MD 20742, USA
| | - Anita Mohseni
- Azad University Tehran Medical Branch, Danesh, Shariati Street, Tehran, Iran 19395/1495
| | - Niloufar Shababi
- Johns Hopkins University School of Medicine, 600 N. Wolfe Street / Phipps 446, Baltimore, MD 21287, USA
| |
Collapse
|
2
|
Lu G, Tian R, Yang W, Liu R, Liu D, Xiang Z, Zhang G. Deep learning radiomics based on multimodal imaging for distinguishing benign and malignant breast tumours. Front Med (Lausanne) 2024; 11:1402967. [PMID: 39036101 PMCID: PMC11257849 DOI: 10.3389/fmed.2024.1402967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/14/2024] [Indexed: 07/23/2024] Open
Abstract
Objectives This study aimed to develop a deep learning radiomic model using multimodal imaging to differentiate benign and malignant breast tumours. Methods Multimodality imaging data, including ultrasonography (US), mammography (MG), and magnetic resonance imaging (MRI), from 322 patients (112 with benign breast tumours and 210 with malignant breast tumours) with histopathologically confirmed breast tumours were retrospectively collected between December 2018 and May 2023. Based on multimodal imaging, the experiment was divided into three parts: traditional radiomics, deep learning radiomics, and feature fusion. We tested the performance of seven classifiers, namely, SVM, KNN, random forest, extra trees, XGBoost, LightGBM, and LR, on different feature models. Through feature fusion using ensemble and stacking strategies, we obtained the optimal classification model for benign and malignant breast tumours. Results In terms of traditional radiomics, the ensemble fusion strategy achieved the highest accuracy, AUC, and specificity, with values of 0.892, 0.942 [0.886-0.996], and 0.956 [0.873-1.000], respectively. The early fusion strategy with US, MG, and MRI achieved the highest sensitivity of 0.952 [0.887-1.000]. In terms of deep learning radiomics, the stacking fusion strategy achieved the highest accuracy, AUC, and sensitivity, with values of 0.937, 0.947 [0.887-1.000], and 1.000 [0.999-1.000], respectively. The early fusion strategies of US+MRI and US+MG achieved the highest specificity of 0.954 [0.867-1.000]. In terms of feature fusion, the ensemble and stacking approaches of the late fusion strategy achieved the highest accuracy of 0.968. In addition, stacking achieved the highest AUC and specificity, which were 0.997 [0.990-1.000] and 1.000 [0.999-1.000], respectively. The traditional radiomic and depth features of US+MG + MR achieved the highest sensitivity of 1.000 [0.999-1.000] under the early fusion strategy. Conclusion This study demonstrated the potential of integrating deep learning and radiomic features with multimodal images. As a single modality, MRI based on radiomic features achieved greater accuracy than US or MG. The US and MG models achieved higher accuracy with transfer learning than the single-mode or radiomic models. The traditional radiomic and depth features of US+MG + MR achieved the highest sensitivity under the early fusion strategy, showed higher diagnostic performance, and provided more valuable information for differentiation between benign and malignant breast tumours.
Collapse
Affiliation(s)
- Guoxiu Lu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Ronghui Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China
| | - Wei Yang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| | - Ruibo Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China
| | - Dongmei Liu
- Department of Ultrasound, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Zijie Xiang
- Biomedical Engineering, Shenyang University of Technology, Shenyang, Liaoning, China
| | - Guoxu Zhang
- Department of Nuclear Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
3
|
Dell'Aquila K, Vadlamani A, Maldjian T, Fineberg S, Eligulashvili A, Chung J, Adam R, Hodges L, Hou W, Makower D, Duong TQ. Machine learning prediction of pathological complete response and overall survival of breast cancer patients in an underserved inner-city population. Breast Cancer Res 2024; 26:7. [PMID: 38200586 PMCID: PMC10782738 DOI: 10.1186/s13058-023-01762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Generalizability of predictive models for pathological complete response (pCR) and overall survival (OS) in breast cancer patients requires diverse datasets. This study employed four machine learning models to predict pCR and OS up to 7.5 years using data from a diverse and underserved inner-city population. METHODS Demographics, staging, tumor subtypes, income, insurance status, and data from radiology reports were obtained from 475 breast cancer patients on neoadjuvant chemotherapy in an inner-city health system (01/01/2012 to 12/31/2021). Logistic regression, Neural Network, Random Forest, and Gradient Boosted Regression models were used to predict outcomes (pCR and OS) with fivefold cross validation. RESULTS pCR was not associated with age, race, ethnicity, tumor staging, Nottingham grade, income, and insurance status (p > 0.05). ER-/HER2+ showed the highest pCR rate, followed by triple negative, ER+/HER2+, and ER+/HER2- (all p < 0.05), tumor size (p < 0.003) and background parenchymal enhancement (BPE) (p < 0.01). Machine learning models ranked ER+/HER2-, ER-/HER2+, tumor size, and BPE as top predictors of pCR (AUC = 0.74-0.76). OS was associated with race, pCR status, tumor subtype, and insurance status (p < 0.05), but not ethnicity and incomes (p > 0.05). Machine learning models ranked tumor stage, pCR, nodal stage, and triple-negative subtype as top predictors of OS (AUC = 0.83-0.85). When grouping race and ethnicity by tumor subtypes, neither OS nor pCR were different due to race and ethnicity for each tumor subtype (p > 0.05). CONCLUSION Tumor subtypes and imaging characteristics were top predictors of pCR in our inner-city population. Insurance status, race, tumor subtypes and pCR were associated with OS. Machine learning models accurately predicted pCR and OS.
Collapse
Affiliation(s)
- Kevin Dell'Aquila
- Department of Radiology, Montefiore Health System and Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY, 10467, USA
| | - Abhinav Vadlamani
- Department of Radiology, Montefiore Health System and Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY, 10467, USA
| | - Takouhie Maldjian
- Department of Radiology, Montefiore Health System and Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY, 10467, USA
| | - Susan Fineberg
- Department of Pathology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anna Eligulashvili
- Department of Radiology, Montefiore Health System and Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY, 10467, USA
| | - Julie Chung
- Department of Oncology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Richard Adam
- Department of Radiology, Montefiore Health System and Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY, 10467, USA
| | - Laura Hodges
- Department of Radiology, Montefiore Health System and Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY, 10467, USA
| | - Wei Hou
- Department of Radiology, Montefiore Health System and Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY, 10467, USA
| | - Della Makower
- Department of Oncology, Montefiore Health System and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Tim Q Duong
- Department of Radiology, Montefiore Health System and Albert Einstein College of Medicine, 111 E 210th St, Bronx, NY, 10467, USA.
- Center for Health Data Innovation, Montefiore Health System and Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
4
|
Guo H, Li M, Liu H, Chen X, Cheng Z, Li X, Yu H, He Q. Multi-threshold Image Segmentation based on an improved Salp Swarm Algorithm: Case study of breast cancer pathology images. Comput Biol Med 2024; 168:107769. [PMID: 38039898 DOI: 10.1016/j.compbiomed.2023.107769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/02/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Breast cancer poses a significant risk to women's health, and it is essential to provide proper diagnostic support. Medical image processing technology is a key component of all supporting diagnostic techniques, with Image Segmentation (IS) being one of its primary steps. Among various methods, Multilevel Image Segmentation (MIS) is considered one of the most effective and straightforward approaches. Many researchers have attempted to improve the quality of image segmentation by combining different metaheuristic algorithms with MIS. However, these methods often suffer from issues such as low convergence accuracy and a proclivity for converging towards Local Optima (LO). To overcome these challenges, this study introduces an integrated approach that combines the Salp Swarm Algorithm (SSA), Slime Mould Algorithm (SMA) and Differential Evolution (DE) algorithm. In this manuscript, we introduce an innovative hybrid MIS model termed SDSSA, which leverages elements from the SSA, SMA and DE algorithms. The SDSSA model fundamentally relies on non-local means 2D histogram and 2D Kapur's entropy. To evaluate the proposed method effectively, we compare it initially with similar algorithms using the IEEE CEC2014 benchmark functions. The SDSSA showcases enhanced convergence velocity and precision relative to similar algorithms. Furthermore, this paper proposes an excellent MIS method. Subsequently, IS experiments were conducted separately at both low and high threshold levels. The test results demonstrate that the segmentation outcomes of MIS, at both low and high threshold levels, outperform other methods. This validates SDSSA as a superior segmentation technique that provides practical assistance for future research in breast cancer pathology image processing.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Mingyang Li
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Hanbo Liu
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Xiao Chen
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Zhiqiang Cheng
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China; Scientific and Technological Innovation Center of Health Products and Medical Materials with Characteristic Resources of Jilin Province, Changchun 130000, China.
| | - Xiaohua Li
- Library, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Helong Yu
- College of Information Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Qiuxiang He
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
5
|
Adam R, Dell'Aquila K, Hodges L, Maldjian T, Duong TQ. Deep learning applications to breast cancer detection by magnetic resonance imaging: a literature review. Breast Cancer Res 2023; 25:87. [PMID: 37488621 PMCID: PMC10367400 DOI: 10.1186/s13058-023-01687-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Deep learning analysis of radiological images has the potential to improve diagnostic accuracy of breast cancer, ultimately leading to better patient outcomes. This paper systematically reviewed the current literature on deep learning detection of breast cancer based on magnetic resonance imaging (MRI). The literature search was performed from 2015 to Dec 31, 2022, using Pubmed. Other database included Semantic Scholar, ACM Digital Library, Google search, Google Scholar, and pre-print depositories (such as Research Square). Articles that were not deep learning (such as texture analysis) were excluded. PRISMA guidelines for reporting were used. We analyzed different deep learning algorithms, methods of analysis, experimental design, MRI image types, types of ground truths, sample sizes, numbers of benign and malignant lesions, and performance in the literature. We discussed lessons learned, challenges to broad deployment in clinical practice and suggested future research directions.
Collapse
Affiliation(s)
- Richard Adam
- Department of Radiology, Albert Einstein College of Medicine and the Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Kevin Dell'Aquila
- Department of Radiology, Albert Einstein College of Medicine and the Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Laura Hodges
- Department of Radiology, Albert Einstein College of Medicine and the Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Takouhie Maldjian
- Department of Radiology, Albert Einstein College of Medicine and the Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Tim Q Duong
- Department of Radiology, Albert Einstein College of Medicine and the Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
| |
Collapse
|
6
|
Dan Q, Zheng T, Liu L, Sun D, Chen Y. Ultrasound for Breast Cancer Screening in Resource-Limited Settings: Current Practice and Future Directions. Cancers (Basel) 2023; 15:2112. [PMID: 37046773 PMCID: PMC10093585 DOI: 10.3390/cancers15072112] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Breast cancer (BC) is the most prevalent cancer among women globally. Cancer screening can reduce mortality and improve women's health. In developed countries, mammography (MAM) has been primarily utilized for population-based BC screening for several decades. However, it is usually unavailable in low-resource settings due to the lack of equipment, personnel, and time necessary to conduct and interpret the examinations. Ultrasound (US) with high detection sensitivity for women of younger ages and with dense breasts has become a supplement to MAM for breast examination. Some guidelines suggest using US as the primary screening tool in certain settings where MAM is unavailable and infeasible, but global recommendations have not yet reached a unanimous consensus. With the development of smart devices and artificial intelligence (AI) in medical imaging, clinical applications and preclinical studies have shown the potential of US combined with AI in BC screening. Nevertheless, there are few comprehensive reviews focused on the role of US in screening BC in underserved conditions, especially in technological, economical, and global perspectives. This work presents the benefits, limitations, advances, and future directions of BC screening with technology-assisted and resource-appropriate strategies, which may be helpful to implement screening initiatives in resource-limited countries.
Collapse
Affiliation(s)
| | | | | | - Desheng Sun
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; (Q.D.); (T.Z.); (L.L.)
| | - Yun Chen
- Department of Ultrasound, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China; (Q.D.); (T.Z.); (L.L.)
| |
Collapse
|
7
|
Karger E, Kureljusic M. Artificial Intelligence for Cancer Detection-A Bibliometric Analysis and Avenues for Future Research. Curr Oncol 2023; 30:1626-1647. [PMID: 36826086 PMCID: PMC9954989 DOI: 10.3390/curroncol30020125] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
After cardiovascular diseases, cancer is responsible for the most deaths worldwide. Detecting a cancer disease early improves the chances for healing significantly. One group of technologies that is increasingly applied for detecting cancer is artificial intelligence. Artificial intelligence has great potential to support clinicians and medical practitioners as it allows for the early detection of carcinomas. During recent years, research on artificial intelligence for cancer detection grew a lot. Within this article, we conducted a bibliometric study of the existing research dealing with the application of artificial intelligence in cancer detection. We analyzed 6450 articles on that topic that were published between 1986 and 2022. By doing so, we were able to give an overview of this research field, including its key topics, relevant outlets, institutions, and articles. Based on our findings, we developed a future research agenda that can help to advance research on artificial intelligence for cancer detection. In summary, our study is intended to serve as a platform and foundation for researchers that are interested in the potential of artificial intelligence for detecting cancer.
Collapse
Affiliation(s)
- Erik Karger
- Information Systems and Strategic IT Management, University of Duisburg-Essen, 45141 Essen, Germany
| | - Marko Kureljusic
- International Accounting, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|