1
|
Berzero G, Pieri V, Palazzo L, Finocchiaro G, Filippi M. Liquid biopsy in brain tumors: moving on, slowly. Curr Opin Oncol 2024; 36:521-529. [PMID: 39011725 DOI: 10.1097/cco.0000000000001079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
PURPOSE OF REVIEW Due to limited access to the tumor, there is an obvious clinical potential for liquid biopsy in patients with primary brain tumors. Here, we review current approaches, present limitations to be dealt with, and new promising data that may impact the field. RECENT FINDINGS The value of circulating tumor cell-free DNA (ctDNA) in the cerebrospinal fluid (CSF) for the noninvasive diagnosis of primary brain tumors has been confirmed in several reports. The detection of ctDNA in the peripheral blood is desirable for patient follow-up but requires ultrasensitive methods to identify low mutant allelic frequencies. Digital PCR approaches and targeted gene panels have been used to identify recurrent hotspot mutations and copy number variations (CNVs) from CSF or plasma. Tumor classification from circulating methylomes in plasma has been actively pursued, although the need of advanced bioinformatics currently hampers clinical application. The use of focused ultrasounds to open the blood-brain barrier may represent a way to enrich of ctDNA the peripheral blood and enhance plasma-based liquid biopsy. SUMMARY Monitoring CNVs and hotspot mutations by liquid biopsy is a promising tool to detect minimal residual disease and strengthen response assessment in patients with primary brain tumors. Novel methods to increase the relative and/or absolute amount of ctDNA can improve the clinical potential of plasma-based liquid biopsies.
Collapse
Affiliation(s)
- Giulia Berzero
- Neurology Unit, IRCCS Ospedale San Raffaele
- Vita-Salute San Raffaele University
| | - Valentina Pieri
- Neurology Unit, IRCCS Ospedale San Raffaele
- Vita-Salute San Raffaele University
| | - Leonardo Palazzo
- Neurology Unit, IRCCS Ospedale San Raffaele
- Vita-Salute San Raffaele University
| | | | - Massimo Filippi
- Neurology Unit, IRCCS Ospedale San Raffaele
- Vita-Salute San Raffaele University
- Neurorehabilitation Unit, Neurophysiology Unit, Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
2
|
Zamuner FT, Ramos-López A, García-Negrón A, Purcell-Wiltz A, Cortés-Ortiz A, Cuevas AR, Gosala K, Winkler E, Sidransky D, Guerrero-Preston R. Evaluation of silica spin‑column and magnetic bead formats for rapid DNA methylation analysis in clinical and point‑of‑care settings. Biomed Rep 2024; 21:112. [PMID: 38912171 PMCID: PMC11190640 DOI: 10.3892/br.2024.1800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Late-stage cancers lack effective treatment, underscoring the need for early diagnosis to improve prognosis and decrease mortality rates. Molecular markers, such as DNA methylation, offer promise in early cancer detection. The present study compared commercial kits for analyzing DNA from cervical liquid cytology samples in cancer screening. Rapid bisulfite conversion kits using silica spin-columns and magnetic beads were assessed against standard DNA extraction and bisulfite conversion methods for profiling DNA methylation using quantitative methylation-specific PCR. β-actin amplification indicated the suitability of small sample volumes for methylation studies using either the pellet or supernatant (cell-free DNA) parts. Comparison of Bisulfite Conversion Kit-Whole Cell (Abcam), Methylamp Bisulfite Modification (Epigentek), EpiTect Fast LyseAll Bisulfite Kit (Qiagen GmbH) and EZ DNA Methylation-Direct Kit (Zymo Research Corp.) showed no significant differences in β-actin cycle threshold values. EZ-96 DNA Methylation-Lightning MagPrep (Zymo Research Corp.), a hybrid kit in a 96-well plate format, exhibited swift turnaround time and similar amplification efficiency. Automation with magnetic bead kits increased throughput without compromising amplification efficiency in open PCR systems. Cost analysis favored direct kits over the gold standard manual protocol. This comparison aids in selecting cost-effective DNA methylation diagnostic tests. The present study confirmed comparable kit performance in methylation-based analysis, highlighting the adequacy of cytology samples and the potential of bodily fluids as alternatives for liquid biopsy.
Collapse
Affiliation(s)
- Fernando T. Zamuner
- Department of Otolaryngology and Head and Neck Surgery, Head and Neck Cancer Research Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ashley Ramos-López
- LifeGene-Biomarks, Research and Development Unit, Toa Baja 00949, Puerto Rico
| | | | - Ana Purcell-Wiltz
- LifeGene-Biomarks, Research and Development Unit, Toa Baja 00949, Puerto Rico
- Department of Medicine, San Juan Bautista School of Medicine, Caguas 00725, Puerto Rico
| | - Andrea Cortés-Ortiz
- LifeGene-Biomarks, Research and Development Unit, Toa Baja 00949, Puerto Rico
- Department of Medicine, San Juan Bautista School of Medicine, Caguas 00725, Puerto Rico
| | - Aniris Román Cuevas
- LifeGene-Biomarks, Research and Development Unit, Toa Baja 00949, Puerto Rico
- Department of Biology, University of Puerto Rico, Río Piedras 00931, Puerto Rico
| | - Keerthana Gosala
- Department of Otolaryngology and Head and Neck Surgery, Head and Neck Cancer Research Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Eli Winkler
- Department of Otolaryngology and Head and Neck Surgery, Head and Neck Cancer Research Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- New York University Langone Health, New York, NY 10016, USA
| | - David Sidransky
- Department of Otolaryngology and Head and Neck Surgery, Head and Neck Cancer Research Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Rafael Guerrero-Preston
- LifeGene-Biomarks, Research and Development Unit, Toa Baja 00949, Puerto Rico
- LifeGene-Biomarks, FastForward Innovation Hub, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Linscott JA, Miyagi H, Murthy PB, Yao S, Grass GD, Vosoughi A, Xu H, Wang X, Yu X, Yu A, Zemp L, Gilbert SM, Poch MA, Sexton WJ, Spiess PE, Li R. From Detection to Cure - Emerging Roles for Urinary Tumor DNA (utDNA) in Bladder Cancer. Curr Oncol Rep 2024; 26:945-958. [PMID: 38837106 DOI: 10.1007/s11912-024-01555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE OF REVIEW This review sought to define the emerging roles of urinary tumor DNA (utDNA) for diagnosis, monitoring, and treatment of bladder cancer. Building from early landmark studies the focus is on recent studies, highlighting how utDNA could aid personalized care. RECENT FINDINGS Recent research underscores the potential for utDNA to be the premiere biomarker in bladder cancer due to the constant interface between urine and tumor. Many studies find utDNA to be more informative than other biomarkers in bladder cancer, especially in early stages of disease. Points of emphasis include superior sensitivity over traditional urine cytology, broad genomic and epigenetic insights, and the potential for non-invasive, real-time analysis of tumor biology. utDNA shows promise for improving all phases of bladder cancer care, paving the way for personalized treatment strategies. Building from current research, future comprehensive clinical trials will validate utDNA's clinical utility, potentially revolutionizing bladder cancer management.
Collapse
Affiliation(s)
- Joshua A Linscott
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| | - Hiroko Miyagi
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Prithvi B Murthy
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sijie Yao
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - G Daniel Grass
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Aram Vosoughi
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Hongzhi Xu
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Alice Yu
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Logan Zemp
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Scott M Gilbert
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Michael A Poch
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Wade J Sexton
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Philippe E Spiess
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Roger Li
- Department of Genitourinary Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
4
|
Santourlidis S, Araúzo-Bravo MJ, Brodell RT, Hassan M, Bendhack ML. hTERT Epigenetics Provides New Perspectives for Diagnosis and Evidence-Based Guidance of Chemotherapy in Cancer. Int J Mol Sci 2024; 25:7331. [PMID: 39000438 PMCID: PMC11242863 DOI: 10.3390/ijms25137331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Strong epigenetic pan-cancer biomarkers are required to meet several current, urgent clinical needs and to further improve the present chemotherapeutic standard. We have concentrated on the investigation of epigenetic alteration of the hTERT gene, which is frequently epigenetically dysregulated in a number of cancers in specific developmental stages. Distinct DNA methylation profiles were identified in our data on early urothelial cancer. An efficient EpihTERT assay could be developed utilizing suitable combinations with sequence-dependent thermodynamic parameters to distinguish between differentially methylated states. We infer from this data set, the epigenetic context, and the related literature that a CpG-rich, 2800 bp region, a prominent CpG island, surrounding the transcription start of the hTERT gene is the crucial epigenetic zone for the development of a potent biomarker. In order to accurately describe this region, we have named it "Acheron" (Ἀχέρων). In Greek mythology, this is the river of woe and misery and the path to the underworld. Exploitation of the DNA methylation profiles focused on this region, e.g., idiolocal normalized Methylation Specific PCR (IDLN-MSP), opens up a wide range of new possibilities for diagnosis, determination of prognosis, follow-up, and detection of residual disease. It may also have broad implications for the choice of chemotherapy.
Collapse
Affiliation(s)
- Simeon Santourlidis
- Institute of Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Marcos J. Araúzo-Bravo
- Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, 20014 San Sebastián, Spain;
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, 67000 Strasbourg, France;
- Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Marcelo L. Bendhack
- Department of Urology, Red Cross University Hospital, Positivo University, Rua Mauá 1111, Curitiba 80030-200, Brazil;
| |
Collapse
|
5
|
Yang Q, Madueke-Laveaux OS, Cun H, Wlodarczyk M, Garcia N, Carvalho KC, Al-Hendy A. Comprehensive Review of Uterine Leiomyosarcoma: Pathogenesis, Diagnosis, Prognosis, and Targeted Therapy. Cells 2024; 13:1106. [PMID: 38994959 PMCID: PMC11240800 DOI: 10.3390/cells13131106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/14/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Uterine leiomyosarcoma (uLMS) is the most common subtype of uterine sarcomas. They have a poor prognosis with high rates of recurrence and metastasis. The five-year survival for uLMS patients is between 25 and 76%, with survival rates approaching 10-15% for patients with metastatic disease at the initial diagnosis. Accumulating evidence suggests that several biological pathways are involved in uLMS pathogenesis. Notably, drugs that block abnormal functions of these pathways remarkably improve survival in uLMS patients. However, due to chemotherapy resistance, there remains a need for novel drugs that can target these pathways effectively. In this review article, we provide an overview of the recent progress in ascertaining the biological functions and regulatory mechanisms in uLMS from the perspective of aberrant biological pathways, including DNA repair, immune checkpoint blockade, protein kinase and intracellular signaling pathways, and the hedgehog pathway. We review the emerging role of epigenetics and epitranscriptome in the pathogenesis of uLMS. In addition, we discuss serum markers, artificial intelligence (AI) combined with machine learning, shear wave elastography, current management and medical treatment options, and ongoing clinical trials for patients with uLMS. Comprehensive, integrated, and deeper insights into the pathobiology and underlying molecular mechanisms of uLMS will help develop novel strategies to treat patients with this aggressive tumor.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (O.S.M.-L.); (H.C.); (A.A.-H.)
| | | | - Han Cun
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (O.S.M.-L.); (H.C.); (A.A.-H.)
| | - Marta Wlodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland;
| | - Natalia Garcia
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center, San Antonio, TX 78229, USA;
- Department of Cell Systems and Anatomy, University of Texas Health Science Center, San Antonio, TX 78229, USA
| | - Katia Candido Carvalho
- Laboratório de Ginecologia Estrutural e Molecular (LIM 58), Disciplina de Ginecologia, Departamento deObstetricia e Ginecologia, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 05403-010, Brazil;
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (O.S.M.-L.); (H.C.); (A.A.-H.)
| |
Collapse
|
6
|
Nielsen LR, Stensgaard S, Meldgaard P, Sorensen BS. ctDNA-based minimal residual disease detection in lung cancer patients treated with curative intended chemoradiotherapy using a clinically transferable approach. Cancer Treat Res Commun 2024; 39:100802. [PMID: 38428066 DOI: 10.1016/j.ctarc.2024.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Reliable biomarkers are needed to identify tumor recurrence of non-small cell lung cancer (NSCLC) patients after chemoradiotherapy (CRT) with curative intent. This could improve consolidation therapy of progressing patients. However, the approach of existing studies has limited transferability to the clinic. MATERIALS AND METHODS A retrospective analysis of 135 plasma samples from 56 inoperable NSCLC patients who received CRT with curative intent was performed. Plasma samples collected at baseline, at the first check-up (average 1.6 months post-RT), and at the second check-up (average 4.5 months post-RT) were analyzed by deep sequencing with a commercially available cancer personalized profiling strategy (CAPP-Seq) using a tumor-agnostic approach. RESULTS Detection of circulating tumor DNA (ctDNA) at 4.5 months after therapy was significantly associated with higher odds of tumor recurrence (OR: 5.4 (CI: 1.1-31), Fisher's exact test: p-value = 0.022), and shorter recurrence-free survival (RFS) (HR: 4.1 (CI: 1.7-10); log-rank test: p-value = 9e-04). In contrast, detection of ctDNA at 1.6 months after therapy was not associated with higher odds of tumor recurrence (OR: 2.7 (CI: 0.67-12), Fisher's exact test: p-value = 0.13) or shorter RFS (HR: 1.5 (CI: 0.67-3.3); log-rank test: p-value = 0.32). CONCLUSION This study demonstrates that the detection of ctDNA can be used to identify minimal residual disease 4.5 months after CRT in NSCLC patients using a commercially available kit and a tumor-agnostic approach. Furthermore, the time point of collecting the plasma sample after CRT has decisive importance for the prognostic value of ctDNA. MICRO ABSTRACT This study analysed 135 plasma samples from 56 NSCLC patients treated with curative intent chemoradiotherapy using a tumor-agnostic approach. Detecting ctDNA at 4.5 months post-treatment was linked to higher recurrence odds, indicating ctDNA's potential as a biomarker for identifying residual disease after treatment with curative intent. Importantly, the study emphasizes the importance of timing for accurate ctDNA analysis results.
Collapse
Affiliation(s)
- Lærke Rosenlund Nielsen
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Simone Stensgaard
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Peter Meldgaard
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark; Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark
| | - Boe Sandahl Sorensen
- Department of Clinical Biochemistry, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 99, Aarhus N, 8200, Denmark.
| |
Collapse
|