1
|
Falcão SI, Bocquet M, Chlebo R, Barreira JCM, Giacomelli A, Smodiš Škerl MI, Quaglia G. Composition and Quality of Honey Bee Feed: The Methodology and Monitoring of Candy Boards. Animals (Basel) 2024; 14:2836. [PMID: 39409785 PMCID: PMC11475582 DOI: 10.3390/ani14192836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The nutritional status of a honey bee colony is recognized as a key factor in ensuring a healthy hive. A deficient flow of nectar and pollen in the honey bee colony immediately affects its development, making room for pathogen proliferation and, consequently, for a reduction in the activities and strength of the colony. It is, therefore, urgent for the beekeepers to use more food supplements and/or substitutes in apiary management, allowing them to address colony nutritional imbalances according to the beekeeper's desired results. In this context, the commercial market for beekeeping products is growing rapidly due to low regulation of animal food products and the beekeeper's willingness to guarantee healthy colonies. There are numerous products (bee food additives) currently available on the worldwide market, with a highly variable and sometimes even undefined composition, claiming a set of actions at the level of brood stimulation, energy supplementation, queen rearing support, reduction of Varroa reproduction levels, improvement of the intestinal microflora of bees, Nosema prevention, and improvement of the health of honey bee colonies infested by American foulbrood, among others. To address this issue, the members of the COLOSS (Honey Bee Research Association) NUTRITION Task Force are proposing, for the first time, action on honey bee feed control and monitoring. In our common study, we focused on candy board composition and quality parameters. For that, a selected number of commercial candy boards usually found in Europe were analyzed in terms of water and ash content, pH, acidity, 5-hydroxymethylfurfural, sugars, C3-C4 sugar origin, and texture. Results revealed differences between the values found and the ones displayed on the label, demonstrating the need for regulation of the quality of these products.
Collapse
Affiliation(s)
- Soraia I. Falcão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Michel Bocquet
- Apimedia, 82 Route de Proméry—Pringy, 74370 Annecy, France;
| | - Robert Chlebo
- Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - João C. M. Barreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Alessandra Giacomelli
- UNAAPI—Italian National Union Beekeeper Association, Via Paolo Boselli 2, 50136 Florence, Italy;
| | | | | |
Collapse
|
2
|
Lawag IL, Islam MK, Sostaric T, Lim LY, Hammer K, Locher C. Antioxidant Activity and Phenolic Compound Identification and Quantification in Western Australian Honeys. Antioxidants (Basel) 2023; 12:antiox12010189. [PMID: 36671051 PMCID: PMC9854687 DOI: 10.3390/antiox12010189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
This study reports on the total phenolic content and antioxidant activity as well as the phenolic compounds that are present in Calothamnus spp. (Red Bell), Agonis flexuosa (Coastal Peppermint), Corymbia calophylla (Marri) and Eucalyptus marginata (Jarrah) honeys from Western Australia. The honey's total phenolic content (TPC) was determined using a modified Folin-Ciocalteu assay, while their total antioxidant activity was determined using FRAP and DPPH assays. Phenolic constituents were identified using a High Performance Thin-Layer Chromatography (HTPLC)-derived phenolic database, and the identified phenolic compounds were quantified using HPTLC. Finally, constituents that contribute to the honeys' antioxidant activity were identified using a DPPH-HPTLC bioautography assay. Based on the results, Calothamnus spp. honey (n = 8) was found to contain the highest (59.4 ± 7.91 mg GAE/100 g) TPC, followed by Eucalyptus marginata honey (50.58 ± 3.76 mg GAE/100 g), Agonis flexuosa honey (36.08 ± 4.2 mg GAE/100 g) and Corymbia calophylla honey (29.15 ± 5.46 mg GAE/100 g). In the FRAP assay, Calothamnus spp. honey also had the highest activity (9.24 ± 1.68 mmol Fe2+/kg), followed by Eucalyptus marginata honey (mmol Fe2+/kg), whereas Agonis flexuosa (5.45 ± 1.64 mmol Fe2+/kg) and Corymbia calophylla honeys (4.48 ± 0.82 mmol Fe2+/kg) had comparable FRAP activity. In the DPPH assay, when the mean values were compared, it was found that Calothamnus spp. honey again had the highest activity (3.88 ± 0.96 mmol TE/kg) while the mean DPPH antioxidant activity of Eucalyptus marginata, Agonis flexuosa, and Corymbia calophylla honeys were comparable. Kojic acid and epigallocatechin gallate were found in all honeys, whilst other constituents (e.g., m-coumaric acid, lumichrome, gallic acid, taxifolin, luteolin, epicatechin, hesperitin, eudesmic acid, syringic acid, protocatechuic acid, t-cinnamic acid, o-anisic acid) were only identified in some of the honeys. DPPH-HPTLC bioautography demonstrated that most of the identified compounds possess antioxidant activity, except for t-cinnamic acid, eudesmic acid, o-anisic acid, and lumichrome.
Collapse
Affiliation(s)
- Ivan Lozada Lawag
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), The University of Western Australia, Agriculture North M085, Crawley, WA 6009, Australia
- Division of Pharmacy, School of Allied Health, The University of Western Australia, Curnow Building M315, Crawley, WA 6009, Australia
| | - Md Khairul Islam
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), The University of Western Australia, Agriculture North M085, Crawley, WA 6009, Australia
- Division of Pharmacy, School of Allied Health, The University of Western Australia, Curnow Building M315, Crawley, WA 6009, Australia
| | - Tomislav Sostaric
- Division of Pharmacy, School of Allied Health, The University of Western Australia, Curnow Building M315, Crawley, WA 6009, Australia
| | - Lee Yong Lim
- Division of Pharmacy, School of Allied Health, The University of Western Australia, Curnow Building M315, Crawley, WA 6009, Australia
| | - Katherine Hammer
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), The University of Western Australia, Agriculture North M085, Crawley, WA 6009, Australia
- School of Biomedical Sciences, The University of Western Australia, L Block QEII Medical Centre, Monash Ave., Crawley, WA 6009, Australia
| | - Cornelia Locher
- Cooperative Research Centre for Honey Bee Products Limited (CRC HBP), The University of Western Australia, Agriculture North M085, Crawley, WA 6009, Australia
- Division of Pharmacy, School of Allied Health, The University of Western Australia, Curnow Building M315, Crawley, WA 6009, Australia
- Correspondence:
| |
Collapse
|
4
|
Bodin L, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Leblanc J, Bignami M, Hoogenboom L(R, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Schrenk D, Vleminckx C, Wallace H, Focks A, Gregorc A, Metzler M, Sgolastra F, Tosi S, Horvath Z, Ippolito A, Rortais A, Steinkellner H, Szentes C, Sand S. Evaluation of the risks for animal health related to the presence of hydroxymethylfurfural (HMF) in feed for honey bees. EFSA J 2022; 20:e07227. [PMID: 35475165 PMCID: PMC9019825 DOI: 10.2903/j.efsa.2022.7227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The European Commission has asked the EFSA to evaluate the risk for animal health related to the presence of hydroxymethylfurfural (HMF) in honey bee feed. HMF is a degradation product of particular sugars and can be present in bee feed. HMF is of low acute toxicity in bees but causes increased mortality upon chronic exposure. A benchmark dose lower limit 10% (BMDL10) of 1.16 μg HMF per bee per day has been calculated from mortalities observed in a 20-day study and established as a Reference Point covering also mortality in larvae, drones and queens for which no or insufficient toxicity data were available. Winter bees have a much longer lifespan than summer bees and HMF shows clear time reinforced toxicity (TRT) characteristics. Therefore, additional Reference Point intervals of 0.21-3.1, 0.091-1.1 and 0.019-0.35 µg HMF/bee per day were calculated based on extrapolation to exposure durations of 50, 90 and 180 days, respectively. A total of 219 analytical data of HMF concentrations in bee feed from EU Member States and 88 from Industry were available. Exposure estimates of worker bees and larvae ranged between 0.1 and 0.48, and between 0.1 and 0.51 μg HMF/per day, respectively. They were well below the BMDL10 of 1.16 μg HMF/bee per day, and thus, no concern was identified. However, when accounting for TRT, the probability that exposures were below established reference point intervals was assessed to be extremely unlikely to almost certain depending on exposure duration. A concern for bee health was identified when bees are exposed to HMF contaminated bee feed for several months.
Collapse
|
5
|
Mokale Kognou AL, Shrestha S, Jiang ZH, Xu C, Sun F, Qin W. High-fructose corn syrup production and its new applications for 5-hydroxymethylfurfural and value-added furan derivatives: Promises and challenges. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2022.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
6
|
Abstract
In recent decades, independent national and international research programs have revealed possible reasons for the death of managed honey bee colonies worldwide. Such losses are not due to a single factor, but instead are due to highly complex interactions between various internal and external influences, including pests, pathogens, honey bee stock diversity, and environmental change. Reduced honey bee vitality and nutrition, exposure to agrochemicals, and quality of colony management contribute to reduced colony survival in beekeeping operations. Our Special Issue (SI) on ‘’Monitoring of Honey Bee Colony Losses’’ aims to address specific challenges facing honey bee researchers and beekeepers. This SI includes four reviews, with one being a meta-analysis that identifies gaps in the current and future directions for research into honey bee colonies mortalities. Other review articles include studies regarding the impact of numerous factors on honey bee mortality, including external abiotic factors (e.g., winter conditions and colony management) as well as biotic factors such as attacks by Vespa velutina and Varroa destructor.
Collapse
|