1
|
Hall LA, Wang IJ, Escalona M, Beraut E, Sacco S, Sahasrabudhe R, Nguyen O, Toffelmier E, Shaffer HB, Beissinger SR. Reference genome of the black rail, Laterallus jamaicensis. J Hered 2023; 114:436-443. [PMID: 37119047 PMCID: PMC10287143 DOI: 10.1093/jhered/esad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/27/2023] [Indexed: 04/30/2023] Open
Abstract
The black rail, Laterallus jamaicensis, is one of the most secretive and poorly understood birds in the Americas. Two of its five subspecies breed in North America: the Eastern black rail (L. j. jamaicensis), found primarily in the southern and mid-Atlantic states, and the California black rail (L. j. coturniculus), inhabiting California and Arizona, are recognized across the highly disjunct distribution. Population declines, due primarily to wetland loss and degradation, have resulted in conservation status listings for both subspecies. To help advance understanding of the phylogeography, biology, and ecology of this elusive species, we report the first reference genome assembly for the black rail, produced as part of the California Conservation Genomics Project (CCGP). We produced a de novo genome assembly using Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology with an estimated sequencing error rate of 0.182%. The assembly consists of 964 scaffolds spanning 1.39 Gb, with a contig N50 of 7.4 Mb, scaffold N50 of 21.4 Mb, largest contig of 44.8 Mb, and largest scaffold of 101.2 Mb. The assembly has a high BUSCO completeness score of 96.8% and represents the first genome assembly available for the genus Laterallus. This genome assembly can help resolve questions about the complex evolutionary history of rails, assess black rail vagility and population connectivity, estimate effective population sizes, and evaluate the potential of rails for adaptive evolution in the face of growing threats from climate change, habitat loss and fragmentation, and disease.
Collapse
Affiliation(s)
- Laurie A Hall
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, United States
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, United States
| | - Ian J Wang
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, United States
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, United States
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA 95064, United States
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of Califin JHornia, Santa Cruz, CA 95064, United States
| | - Samuel Sacco
- Department of Ecology and Evolutionary Biology, University of Califin JHornia, Santa Cruz, CA 95064, United States
| | - Ruta Sahasrabudhe
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA 95616, United States
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA 95616, United States
| | - Erin Toffelmier
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, United States
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, United States
| | - H Bradley Shaffer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, United States
- La Kretz Center for California Conservation Science, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, United States
| | - Steven R Beissinger
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, United States
- Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
2
|
Lévêque L, Buettel JC, Carver S, Brook BW. Characterizing the spatio-temporal threats, conservation hotspots and conservation gaps for the most extinction-prone bird family (Aves: Rallidae). ROYAL SOCIETY OPEN SCIENCE 2021; 8:210262. [PMID: 34527269 PMCID: PMC8424349 DOI: 10.1098/rsos.210262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
With thousands of vertebrate species now threatened with extinction, there is an urgent need to understand and mitigate the causes of wildlife collapse. Rails (Aves: Rallidae), being the most extinction-prone bird family globally, and with one-third of extant rail species now threatened or near threatened, are an emphatic case in point. Here, we undertook a global synthesis of the temporal and spatial threat patterns for Rallidae and determined conservation priorities and gaps. We found two key pathways in the threat pattern for rails. One follows the same trajectory as extinct rails, where island endemic and flightless rails are most threatened, mainly due to invasive predators. The second, created by the diversification of anthropogenic activities, involves continental rails, threatened mainly by agriculture, natural system modifications, and residential and commercial development. Indonesia, the USA, the United Kingdom, New Zealand and Cuba were the priority countries identified by our framework incorporating species' uniqueness and the level of endangerment, but also among the countries that lack conservation actions the most. Future efforts should predominantly target improvements in ecosystem protection and management, as well as ongoing research and monitoring. Forecasting the impacts of climate change on island endemic rails will be particularly valuable to protect rails.
Collapse
Affiliation(s)
- Lucile Lévêque
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Jessie C Buettel
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage (CABAH), Australia
| | - Scott Carver
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
| | - Barry W Brook
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania 7001, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage (CABAH), Australia
| |
Collapse
|
3
|
Nicolas V, Mikula O, Lavrenchenko LA, Šumbera R, Bartáková V, Bryjová A, Meheretu Y, Verheyen E, Missoup AD, Lemmon AR, Moriarty Lemmon E, Bryja J. Phylogenomics of African radiation of Praomyini (Muridae: Murinae) rodents: First fully resolved phylogeny, evolutionary history and delimitation of extant genera. Mol Phylogenet Evol 2021; 163:107263. [PMID: 34273505 DOI: 10.1016/j.ympev.2021.107263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 11/25/2022]
Abstract
The tribe Praomyini is a diversified group including 64 species and eight extant rodent genera. They live in a broad spectrum of habitats across whole sub-Saharan Africa. Members of this tribe are often very abundant, they have a key ecological role in ecosystems, they are hosts of many potentially pathogenic microorganisms and comprise numerous agricultural pests. Although this tribe is well supported by both molecular and morphological data, its intergeneric relationships and the species contents of several genera are not yet fully resolved. Recent molecular data suggest that at least three genera in current sense are paraphyletic. However, in these studies the species sampling was sparse and the resolution of relationships among genera was poor, probably due to a fast radiation of the tribe dated to the Miocene and insufficient amount of genetic data. Here we used genomic scale data (395 nuclear loci = 610,965 bp long alignment and mitogenomes = 14,745 bp) and produced the first fully resolved species tree containing most major lineages of the Praomyini tribe (i.e. all but one currently delimited genera and major intrageneric clades). Results of a fossil-based divergence dating analysis suggest that the radiation started during the Messinian stage (ca. 7 Ma) and was likely linked to a fragmentation of the pan-African Miocene forest. Some lineages remained in the rain forests, while many others adapted to a broad spectrum of new open lowland and montane habitats that appeared at the beginning of Pliocene. Our analyses clearly confirmed the presence of three polyphyletic genera (Praomys, Myomyscus and Mastomys). We review current knowledge of these three genera and suggest corresponding taxonomic changes. To keep genera monophyletic, we propose taxonomic re-arrangements and delimit four new genera. Furthermore, we discovered a new highly divergent genetic lineage of Praomyini in southwestern Ethiopia, which is described as a new species and genus.
Collapse
Affiliation(s)
- Violaine Nicolas
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP51, 75005 Paris, France
| | - Ondřej Mikula
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Leonid A Lavrenchenko
- A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninskii pr. 33, Moscow 119071, Russia
| | - Radim Šumbera
- Department of Zoology, Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Veronika Bartáková
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Anna Bryjová
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Yonas Meheretu
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; Department of Biology and Institute of Mountain Research and Development, Mekelle University, Mekelle, Tigray, Ethiopia
| | - Erik Verheyen
- Royal Belgian Institute for Natural Sciences, Operational Direction Taxonomy and Phylogeny, 1000 Brussels, Belgium; Evolutionary Ecology Group, Biology Department, University of Antwerp, 2020 Antwerp, Belgium
| | - Alain Didier Missoup
- Zoology Unit, Laboratory of Biology and Physiology of Animal Organisms, Faculty of Science, University of Douala, Douala, Cameroon
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University, Dirac Science Library, Tallahassee, FL 32306-4295, United States
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Drive, PO Box 3064295, Tallahassee, FL 32306-4295, United States
| | - Josef Bryja
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic.
| |
Collapse
|
4
|
Oswald JA, Terrill RS, Stucky BJ, LeFebvre MJ, Steadman DW, Guralnick RP, Allen JM. Ancient DNA from the extinct Haitian cave-rail ( Nesotrochis steganinos) suggests a biogeographic connection between the Caribbean and Old World. Biol Lett 2021; 17:20200760. [PMID: 33726563 DOI: 10.1098/rsbl.2020.0760] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Worldwide decline in biodiversity during the Holocene has impeded a comprehensive understanding of pre-human biodiversity and biogeography. This is especially true on islands, because many recently extinct island taxa were morphologically unique, complicating assessment of their evolutionary relationships using morphology alone. The Caribbean remains an avian hotspot but was more diverse before human arrival in the Holocene. Among the recently extinct lineages is the enigmatic genus Nesotrochis, comprising three flightless species. Based on morphology, Nesotrochis has been considered an aberrant rail (Rallidae) or related to flufftails (Sarothruridae). We recovered a nearly complete mitochondrial genome of Nesotrochis steganinos from fossils, discovering that it is not a rallid but instead is sister to Sarothruridae, volant birds now restricted to Africa and New Guinea, and the recently extinct, flightless Aptornithidae of New Zealand. This result suggests a widespread or highly dispersive most recent common ancestor of the group. Prior to human settlement, the Caribbean avifauna had a far more cosmopolitan origin than is evident from extant species.
Collapse
Affiliation(s)
- Jessica A Oswald
- Biology Department, University of Nevada, Reno, NV 89557, USA.,Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Ryan S Terrill
- Moore Lab of Zoology, Occidental College, Los Angeles, CA 90041, USA
| | - Brian J Stucky
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Michelle J LeFebvre
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - David W Steadman
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Julie M Allen
- Biology Department, University of Nevada, Reno, NV 89557, USA.,Illinois Natural History Survey, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
5
|
Garcia-R JC, Matzke NJ. Trait-dependent dispersal in rails (Aves: Rallidae): Historical biogeography of a cosmopolitan bird clade. Mol Phylogenet Evol 2021; 159:107106. [PMID: 33601027 DOI: 10.1016/j.ympev.2021.107106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 11/29/2020] [Accepted: 02/03/2021] [Indexed: 11/27/2022]
Abstract
The ability of lineages to disperse over evolutionary timescales may be influenced by the gain or loss of traits after adaptation to new ecological conditions. For example, rails (Aves: Rallidae) have many cases of flightless insular endemic species that presumably evolved after flying ancestors dispersed over large ocean barriers and became isolated. Nonetheless, the details of how flying and its loss have influenced the clade's historical biogeography are unknown, as is the importance of other predictors of dispersal such as the geographic distance between regions. Here, we used a dated phylogeny of 158 species of rails to compare trait-dependent and trait-independent biogeography models in BioGeoBEARS. We evaluated a probabilistic historical biogeographical model that allows geographic range and flight to co-evolve and influence dispersal ability on a phylogeny. The best-fitting dispersal model was a trait-dependent dispersal (DEC + j + x + t21 + m1) that accrued 85.2% of the corrected Akaike Information Criterion (AICc) model weight. The distance-dependence parameter, x was estimated at -0.54, ranging from -0.49 to -0.65 across models, suggesting that a doubling of dispersal distance results in an approximately 31% decrease in dispersal rate (2-0.54 = 0.69). The estimated rate of loss of flight (t21) was similar across all models (~0.029 loss events per lineage per million years). The multiplier on dispersal rate when a lineage is non-flying, m1, is estimated to be 0.38 under this model. Surprisingly, the estimate of m1 was not 0.0, probably because the loss of flight is so common in the rails that entire clades of flightless species are found in the data, forcing the model to attribute some dispersal to flightless lineages. These results indicate that long-distance dispersal over macroevolutionary timespans can be modelled, rather than simply attributed to chance, allowing support for different hypotheses to be quantified and limitations to be identified. Overall, by combining new analytical methods with a comprehensive phylogeny, we use a quantitative framework to show how traits influence dispersal capacity and eventually shape geographical distributions at a macroevolutionary scale.
Collapse
Affiliation(s)
- Juan C Garcia-R
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, School of Veterinary Science, Massey University, Private Bag, 11 222, Palmerston North 4442, New Zealand.
| | - Nicholas J Matzke
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Molecular Species Delimitation of Larks (Aves: Alaudidae), and Integrative Taxonomy of the Genus Calandrella, with the Description of a Range-Restricted African Relic Taxon. DIVERSITY 2020. [DOI: 10.3390/d12110428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Larks constitute an avian family of exceptional cryptic diversity and striking examples of convergent evolution. Therefore, traditional morphology-based taxonomy has recurrently failed to reflect evolutionary relationships. While taxonomy ideally should integrate morphology, vocalizations, behaviour, ecology, and genetics, this can be challenging for groups that span several continents including areas that are difficult to access. Here, we combine morphometrics and mitochondrial DNA to evaluate the taxonomy of Calandrella larks, with particular focus on the African C. cinerea and the Asian C. acutirostris complexes. We describe a new range-restricted West African taxon, Calandrella cinerea rufipecta ssp. nov. (type locality: Jos, Plateau State, Nigeria), with an isolated relic population 3000 km from its closest relative in the Rift Valley. We performed molecular species delimitation, employing coalescence-based multi-rate Poisson Tree Processes (mPTP) on cytochrome b sequences across 52 currently recognized lark species, including multiple taxa currently treated as subspecies. Three species-level splits were inferred within the genus Calandrella and another 13 across other genera, primarily among fragmented sub-Saharan taxa and taxa distributed from Northwest Africa to Arabia or East Africa. Previously unknown divergences date back as far as to the Miocene, indicating the presence of currently unrecognized species. However, we stress that taxonomic decisions should not be based on single datasets, such as mitochondrial DNA, although analyses of mitochondrial DNA can be a good indicator of taxa in need of further integrative taxonomic assessment.
Collapse
|
7
|
Evolutionary History of the Galápagos Rail Revealed by Ancient Mitogenomes and Modern Samples. DIVERSITY 2020. [DOI: 10.3390/d12110425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The biotas of the Galápagos Islands are one of the best studied island systems and have provided a broad model for insular species’ origins and evolution. Nevertheless, some locally endemic taxa, such as the Galápagos Rail Laterallus spilonota, remain poorly characterized. Owing to its elusive behavior, cryptic plumage, and restricted distribution, the Galápagos Rail is one of the least studied endemic vertebrates of the Galapagos Islands. To date, there is no genetic data for this species, leaving its origins, relationships to other taxa, and levels of genetic diversity uncharacterized. This lack of information is critical given the adverse fate of island rail species around the world in the recent past. Here, we examine the genetics of Galápagos Rails using a combination of mitogenome de novo assembly with multilocus nuclear and mitochondrial sequencing from both modern and historical samples. We show that the Galápagos Rail is part of the “American black rail clade”, sister to the Black Rail L. jamaicensis, with a colonization of Galápagos dated to 1.2 million years ago. A separate analysis of one nuclear and two mitochondrial markers in the larger population samples demonstrates a shallow population structure across the islands, possibly due to elevated island connectivity. Additionally, birds from the island Pinta possessed the lowest levels of genetic diversity, possibly reflecting past population bottlenecks associated with overgrazing of their habitat by invasive goats. The modern and historical data presented here highlight the low genetic diversity in this endemic rail species and provide useful information to guide conservation efforts.
Collapse
|