1
|
Song Q, Zhao F, Hou L, Miao M. Cellular interactions and evolutionary origins of endosymbiotic relationships with ciliates. THE ISME JOURNAL 2024; 18:wrae117. [PMID: 38916437 PMCID: PMC11253213 DOI: 10.1093/ismejo/wrae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/26/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
As unicellular predators, ciliates engage in close associations with diverse microbes, laying the foundation for the establishment of endosymbiosis. Originally heterotrophic, ciliates demonstrate the ability to acquire phototrophy by phagocytizing unicellular algae or by sequestering algal plastids. This adaptation enables them to gain photosynthate and develop resistance to unfavorable environmental conditions. The integration of acquired phototrophy with intrinsic phagotrophy results in a trophic mode known as mixotrophy. Additionally, ciliates can harbor thousands of bacteria in various intracellular regions, including the cytoplasm and nucleus, exhibiting species specificity. Under prolonged and specific selective pressure within hosts, bacterial endosymbionts evolve unique lifestyles and undergo particular reductions in metabolic activities. Investigating the research advancements in various endosymbiotic cases within ciliates will contribute to elucidate patterns in cellular interaction and unravel the evolutionary origins of complex traits.
Collapse
Affiliation(s)
- Qi Song
- Medical School, University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing 100049, China
| | - Fangqing Zhao
- Medical School, University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing 100049, China
- Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, No. 1 Xiangshan Road, Hangzhou 310024, China
| | - Lina Hou
- Medical School, University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing 100049, China
| | - Miao Miao
- Medical School, University of Chinese Academy of Sciences, No. 1 Yanqihu East Road, Huairou District, Beijing 100049, China
| |
Collapse
|
2
|
Horas EL, Metzger SM, Platzer B, Kelly JB, Becks L. Context-dependent costs and benefits of endosymbiotic interactions in a ciliate-algae system. Environ Microbiol 2022; 24:5924-5935. [PMID: 35799468 DOI: 10.1111/1462-2920.16112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/20/2022] [Indexed: 01/12/2023]
Abstract
Endosymbiosis, an interaction between two species where one lives within the other, has evolved multiple times independently, but the underlying mechanisms remain unclear. Evolutionary theory suggests that for an endosymbiotic interaction to remain stable over time, births of both partners should be higher than their deaths in symbiosis and deaths of both partners should be higher than their births when living independently. However, experimentally measuring this can be difficult and conclusions tend to focus on the host. Using a ciliate-algal system (Paramecium bursaria host and Chlorella endosymbionts), we estimated the benefits and costs of endosymbiosis for both organisms using fitness measurements in different biotic environments to test under which environmental conditions the net effects of the interaction were positive for both partners. We found that the net effects of harbouring endosymbionts were positive for the ciliate hosts as it allowed them to survive in conditions of low-quality bacteria food. The algae benefitted by being endosymbiotic when predators such as the hosts were present, but the net effects were dependent on the total density of hosts, decreasing as hosts densities increased. Overall, we show that including context-dependency of endosymbiosis is essential in understanding how these interactions have evolved.
Collapse
Affiliation(s)
- Elena L Horas
- Limnology-Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Sarah M Metzger
- Limnology-Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Konstanz, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Barbara Platzer
- Limnology-Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Joseph B Kelly
- Limnology-Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Konstanz, Germany
| | - Lutz Becks
- Limnology-Aquatic Ecology and Evolution, Limnological Institute, University of Konstanz, Konstanz, Germany
| |
Collapse
|
3
|
Together forever: Inseparable partners of the symbiotic system Paramecium multimicronucleatum/Ca. Trichorickettsia mobilis. Symbiosis 2022. [DOI: 10.1007/s13199-022-00854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Weiner AKM, Cullison B, Date SV, Tyml T, Volland JM, Woyke T, Katz LA, Sleith RS. Examining the Relationship Between the Testate Amoeba Hyalosphenia papilio (Arcellinida, Amoebozoa) and its Associated Intracellular Microalgae Using Molecular and Microscopic Methods. Protist 2022; 173:125853. [PMID: 35030517 PMCID: PMC9148389 DOI: 10.1016/j.protis.2021.125853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 02/03/2023]
Abstract
Symbiotic relationships between heterotrophic and phototrophic partners are common in microbial eukaryotes. Among Arcellinida (Amoebozoa) several species are associated with microalgae of the genus Chlorella (Archaeplastida). So far, these symbioses were assumed to be stable and mutualistic, yet details of the interactions are limited. Here, we analyzed 22 single-cell transcriptomes and 36 partially-sequenced genomes of the Arcellinida morphospecies Hyalosphenia papilio, which contains Chlorella algae, to shed light on the amoeba-algae association. By characterizing the genetic diversity of associated Chlorella, we detected two distinct clades that can be linked to host genetic diversity, yet at the same time show a biogeographic signal across sampling sites. Fluorescence and transmission electron microscopy showed the presence of intact algae cells within the amoeba cell. Yet analysis of transcriptome data suggested that the algal nuclei are inactive, implying that instead of a stable, mutualistic relationship, the algae may be temporarily exploited for photosynthetic activity before being digested. Differences in gene expression of H. papilio and Hyalosphenia elegans demonstrated increased expression of genes related to oxidative stress. Together, our analyses increase knowledge of this host-symbiont association and reveal 1) higher diversity of associated algae than previously characterized, 2) a transient association between H. papilio and Chlorella with unclear benefits for the algae, 3) algal-induced gene expression changes in the host.
Collapse
Affiliation(s)
- Agnes K M Weiner
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA; NORCE Climate and Environment, NORCE Norwegian Research Centre AS, Jahnebakken 5, 5007 Bergen, Norway
| | - Billie Cullison
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA
| | - Shailesh V Date
- Laboratory for Research in Complex Systems, Menlo Park, California, USA
| | - Tomáš Tyml
- Laboratory for Research in Complex Systems, Menlo Park, California, USA; DOE Joint Genome Institute, Berkeley, California, USA
| | - Jean-Marie Volland
- Laboratory for Research in Complex Systems, Menlo Park, California, USA; DOE Joint Genome Institute, Berkeley, California, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, California, USA
| | - Laura A Katz
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA; University of Massachusetts Amherst, Program in Organismic and Evolutionary Biology, Amherst, Massachusetts, USA
| | - Robin S Sleith
- Smith College, Department of Biological Sciences, Northampton, Massachusetts, USA.
| |
Collapse
|
5
|
Flemming FE, Grosser K, Schrallhammer M. Natural Shifts in Endosymbionts' Occurrence and Relative Frequency in Their Ciliate Host Population. Front Microbiol 2022; 12:791615. [PMID: 35087493 PMCID: PMC8787144 DOI: 10.3389/fmicb.2021.791615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
The role of bacterial endosymbionts harbored by heterotrophic Paramecium species is complex. Obligate intracellular bacteria supposedly always inflict costs as the host is the only possible provider of resources. However, several experimental studies have shown that paramecia carrying bacterial endosymbionts can benefit from their infection. Here, we address the question which endosymbionts occur in natural paramecia populations isolated from a small lake over a period of 5 years and which factors might explain observed shifts and persistence in the symbionts occurrence. One hundred and nineteen monoclonal strains were investigated and approximately two-third harbored intracellular bacteria. The majority of infected paramecia carried the obligate endosymbiotic "Candidatus Megaira polyxenophila", followed by Caedimonas varicaedens, and Holospora undulata. The latter was only detected in a single strain. While "Ca. M. polyxenophila" was observed in seven out of 13 samplings, C. varicaedens presence was limited to a single sampling occasion. After the appearance of C. varicaedens, "Ca. M. polyxenophila" prevalence dramatically dropped with some delay but recovered to original levels at the end of our study. Potential mechanisms explaining these observations include differences in infectivity, host range, and impact on host fitness as well as host competitive capacities. Growth experiments revealed fitness advantages for infected paramecia harboring "Ca. M. polyxenophila" as well as C. varicaedens. Furthermore, we showed that cells carrying C. varicaedens gain a competitive advantage from the symbiosis-derived killer trait. Other characteristics like infectivity and overlapping host range were taken into consideration, but the observed temporal persistence of "Ca. M. polyxenophila" is most likely explained by the positive effect this symbiont provides to its host.
Collapse
Affiliation(s)
- Felicitas E. Flemming
- Microbiology, Institute of Biology II, Albert Ludwig University of Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
6
|
Maeda I, Kudou S, Iwai S. Efficient isolation and cultivation of endosymbiotic Chlorella from Paramecium bursaria on agar plates by co-culture with yeast cells. J Microbiol Methods 2021; 186:106254. [PMID: 34052226 DOI: 10.1016/j.mimet.2021.106254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Paramecium bursaria is a ciliate that harbors Chlorella-like unicellular green algae as endosymbionts. The relationship between the host P. bursaria and the endosymbiotic Chlorella is facultative; therefore, both partners can be cultured independently and re-combined to re-establish symbiosis, making this system suitable for studying algal endosymbiosis. However, despite many previous studies, cultivation of endosymbiotic Chlorella remains difficult, particularly on agar plates. Here we describe a simple agar plate method for efficiently isolating and culturing cells of the endosymbiotic alga Chlorella variabilis from an individual P. bursaria cell, by co-culturing them with yeast Saccharomyces cerevisiae. The co-culture with the yeast significantly improved the colony-forming efficiency of the alga on agar. Growth assays suggest that the main role of the co-cultured yeast cells is not to provide nutrients for the algal cells, but to protect the algal cells from some environmental stresses on the agar surface. Using the algal cells grown on the plates and a set of specially designed primers, direct colony PCR can be performed for screening of multiple endosymbiont clones isolated from a single host ciliate. These methods may provide a useful tool for studying endosymbiotic Chlorella species within P. bursaria and various other protists.
Collapse
Affiliation(s)
- Ippei Maeda
- Department of Biology, Faculty of Education, Hirosaki University, Hirosaki 036-8560, Japan
| | - Shou Kudou
- Department of Biology, Faculty of Education, Hirosaki University, Hirosaki 036-8560, Japan
| | - Sosuke Iwai
- Department of Biology, Faculty of Education, Hirosaki University, Hirosaki 036-8560, Japan.
| |
Collapse
|
7
|
Mironov T, Sabaneyeva E. A Robust Symbiotic Relationship Between the Ciliate Paramecium multimicronucleatum and the Bacterium Ca. Trichorickettsia Mobilis. Front Microbiol 2020; 11:603335. [PMID: 33324385 PMCID: PMC7721670 DOI: 10.3389/fmicb.2020.603335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 10/28/2020] [Indexed: 12/22/2022] Open
Abstract
Close reciprocal interactions in symbiotic systems have suggested the holobiont concept, in which the host and its microbiota are considered as a single entity. Ciliates are known for their ability to form symbiotic associations with prokaryotes. Relationships between the partners in such systems vary from mutualism to parasitism and differ significantly in their robustness. We assessed the viability of the ciliate Paramecium multimicronucleatum and its ability to maintain its intranuclear endosymbiont Ca. Trichorickettsia mobilis (Rickettsiaceae) after treatment with antibiotics characterized by different mode of action, such as ampicillin, streptomycin, chloramphenicol, tetracycline. The presence of endosymbionts in the host cell was determined by means of living cell observations made using differential interference contrast or fluorescence in situ hybridization with the species-specific oligonucleotide probe (FISH). Administration of antibiotics traditionally used in treatments of rickettsioses, tetracycline and chloramphenicol, depending on the concentration used and the ciliate strain treated, either caused death of both, infected and control cells, or did not affect the ability of the host to maintain the intranuclear endosymbiont. The surviving cells always manifested motile bacteria in the macronucleus. Streptomycin treatment never led to the loss of endosymbionts in any of the four infected strains, and nearly all ciliates remained viable. Ampicillin treatment never caused host cell death, but resulted in formation of filamentous and immobile oval bacterial forms. Under repeated ampicillin treatments, a part of endosymbionts was registered in the host cytoplasm, as evidenced both by FISH and transmission electron microscopy. Endosymbionts located in the host cytoplasm were enclosed in vacuoles, apparently, corresponding to autophagosomes. Nevertheless, the bacteria seemed to persist in this compartment and might cause relapse of the infection. Although the antibiotic sensitivity profile of Trichorickettsia seems to resemble that of other representatives of Rickettsiaceae, causative agents of severe diseases in humans, neither of the antibiotic treatments used in this study resulted in an aposymbiotic cell line, apparently, due to the protists’ sensitivity to tetracyclines, the drugs of preference in rickettsiosis treatment. The observed robustness of this symbiotic system makes it a good model for further elaboration of the holobiont concept.
Collapse
Affiliation(s)
- Timofey Mironov
- Department of Cytology and Histology, Biological Faculty, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Elena Sabaneyeva
- Department of Cytology and Histology, Biological Faculty, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
8
|
Abstract
Interests to estimate and assess the diversity of ciliates have a centuries-long history [...]
Collapse
|