1
|
Tian L, An M, Liu F, Zhang Y. Fungal community characteristics of the last remaining habitat of three paphiopedilum species in China. Sci Rep 2024; 14:24737. [PMID: 39433552 PMCID: PMC11494054 DOI: 10.1038/s41598-024-75185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024] Open
Abstract
Paphiopedilum armeniacum, Paphiopedilum wenshanense and Paphiopedilum emersonii are critically endangered wild orchids. Their populations are under severe threat, with a dramatic decline in the number of their natural distribution sites. Ex situ conservation and artificial breeding are the keys to maintaining the population to ensure the success of ex situ conservation and field return in the future. The habitat characteristics and soil nutrient information of the last remaining wild distribution sites of the three species were studied. ITS high-throughput sequencing was used to reveal the composition and structure of the soil fungal community, analyze its diversity and functional characteristics, and reveal its relationship with soil nutrients. The three species preferred to grow on low-lying, ventilated and shaded declivities with good water drainage. There were significant differences in soil alkali-hydrolyzed nitrogen and available phosphorus among the three species. There were 336 fungal species detected in the samples. On average, there were different dominant groups in the soil fungal communities of the three species. The functional groups of soil fungi within their habitats were dominated by saprophytic fungi and ectomycorrhizae, with significant differences in diversity and structure. The co-occurrence network of habitat soil fungi was mainly positive. Soil pH significantly affected soil fungal diversity within their habitats of the three paphiopedilum species. The study confirmed that the dominant groups of soil fungi were significantly correlated with soil nutrients. The three species exhibit comparable habitat inclinations, yet they display substantial variations in the composition, structure, and diversity of soil fungi. The fungal functional group is characterized by a rich presence of saprophytic fungi, a proliferation of ectomycorrhizae, and a modest occurrence of orchid mycorrhizae. The symbiotic interactions among the soil fungi associated with these three species are well-coordinated, enhancing their resilience against challenging environmental conditions. There is a significant correlation between soil environmental factors and the composition of soil fungal communities, with pH emerging as a pivotal factor regulating fungal diversity. Our research into the habitat traits and soil fungal ecosystems of the three wild Paphiopedilum species has established a cornerstone for prospective ex situ conservation measures and the eventual reestablishment of these species in their native landscapes.
Collapse
Affiliation(s)
- Li Tian
- College of Forestry, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, China
| | - Mingtai An
- College of Forestry, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, China.
| | - Feng Liu
- College of Forestry, Guizhou University, Huaxi District, Guiyang City, 550025, Guizhou Province, China
| | - Yang Zhang
- Guiyang City, Guizhou Province Forestry Bureau, Nanming District, Guiyang City, Guizhou Province, 550002, China
| |
Collapse
|
2
|
Tian L, An M, Wu M, Liu F, Zhang Y. Habitat ecological characteristics and soil fungal community structure of Paphiopedilum subgenus Brachypetalum Hallier (Orchidaceae) plants in Southwest China. PLANT SIGNALING & BEHAVIOR 2023; 18:2227365. [PMID: 37377110 DOI: 10.1080/15592324.2023.2227365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 06/29/2023]
Abstract
Species of the subgenus Brachypetalum are the most primitive, most ornamental and most threatened group in the Orchid. This study revealed the ecological characteristics, soil nutrient characteristics and soil fungal community structure of habitats of the subgenus Brachypetalum in Southwest China. Lays a foundation for research on the wild populations and conservation Brachypetalum. The results showed that species of the subgenus Brachypetalum preferred a cool and humid environment, grew in scattered or aggregated form in narrow negative terrain, mainly in humic soil. The soil physical and chemical properties and soil enzyme activity indexes of the habitats were significantly different among different species, and the soil properties of different distribution points of the same species also varied greatly. There were significant differences in the soil fungal community structure among the habitats of different species. Basidiomycetes and ascomycetes were the main fungi in habitats of subgenus Brachypetalum species, and their relative abundance varied among different species. The functional groups of soil fungi were mainly symbiotic fungi and saprophytic fungi. LEfSe analysis found that there were different numbers and species of biomarkers in the habitats of subgenus Brachypetalum species, indicating that the habitat preference characteristics of each species in subgenus Brachypetalum were reflected in the fungal community. It was found that environmental factors had an impact on the changes in soil fungal communities in the habitats of subgenus Brachypetalum species, with climatic factors having the highest explanation rate (20.96%). Soil properties were significantly positively or negatively correlated with a variety of dominant soil fungal groups. Conclusions: The results of this study lay the foundation for the study of the habitat characteristics of wild populations of subgenus Brachypetalum and provides data to support in situ and ex situ conservation in the future.
Collapse
Affiliation(s)
- Li Tian
- Forestry College of Guizhou University, Guizhou University, Guiyang, China
- Research Center of Biodiversity and Nature Conservation, Guizhou University, Guiyang, China
| | - Mingtai An
- Forestry College of Guizhou University, Guizhou University, Guiyang, China
- Research Center of Biodiversity and Nature Conservation, Guizhou University, Guiyang, China
| | - Moxu Wu
- Forestry College of Guizhou University, Guizhou University, Guiyang, China
- Research Center of Biodiversity and Nature Conservation, Guizhou University, Guiyang, China
| | - Feng Liu
- Forestry College of Guizhou University, Guizhou University, Guiyang, China
- Research Center of Biodiversity and Nature Conservation, Guizhou University, Guiyang, China
| | - Yang Zhang
- Forestry College of Guizhou University, Guizhou University, Guiyang, China
- Research Center of Biodiversity and Nature Conservation, Guizhou University, Guiyang, China
| |
Collapse
|
3
|
Yao N, Zheng B, Wang T, Cao X. Isolation of Tulasnella spp. from Cultivated Paphiopedilum Orchids and Screening of Germination-Enhancing Fungi. J Fungi (Basel) 2023; 9:597. [PMID: 37367533 DOI: 10.3390/jof9060597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Ex situ conservation, an important way to increase the survival and sustainability of endangered species, is widely used in the conservation of endangered orchids. However, long-term ex situ conservation might affect the dominant group of orchid symbiotic fungi, which are crucial for orchid growth and reintroduction. This study investigated the culturable Tulasnella spp. associated with Paphiopedilum orchids after long-term greenhouse cultivation, and identified germination-enhancing isolates. A total of 44 Tulasnella isolates were obtained from the roots of 14 Paphiopedilum spp., and 29 of them were selected for phylogenetic analysis. They clustered mainly with Tulasnella deliquescens, Tulasnella calospora, Tulasnella bifrons, and Tulasnella irregularis, but included two potential new groups. Compared with published uncultured data, most of the isolates were grouped together with the reported types, and the dominant Tulasnella associated with P. armeniacum and P. micranthum could still be isolated after ten years of cultivation, most of which were the first isolation. In vitro symbiotic germination showed that certain root isolates could promote seed germination (e.g., parm152 isolated from P. armeniacum, Php12 from P. hirsutissimum, and prhi68 from P. rhizomatosum). These data indicated that the dominant Tulasnella types colonizing the roots of cultivated Paphiopedilum are stable over time, and germination-enhancing fungi colonizing the roots would benefit for seed reproduction after population reintroduction into the wild.
Collapse
Affiliation(s)
- Na Yao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Baoqiang Zheng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Tao Wang
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Floriculture Engineering Technology Research Centre, China National Botanical Garden (North Garden), Beijing 100093, China
| | - Xiaolu Cao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| |
Collapse
|
4
|
Dutta D, De A. A comparative analysis of the past and present occurrences of some species of Paphiopedilum (Orchidaceae) in northeastern India using MaxEnt and GeoCAT. JOURNAL OF THREATENED TAXA 2022. [DOI: 10.11609/jott.7861.14.11.22086-22097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Members of the genus Paphiopedilum are well known for their long-lasting unique flowers. They are becoming rare due to over-collection and habitat loss because of human disturbances and deforestation. The present study aimed to compare the past and present occurrences of the genus Paphiopedilum in northeastern India using MaxEnt and GeoCAT. A historical occurrence model (HOM) was prepared using secondary data, and an actual occurrence model (AOM) was constructed with primary field data. The HOM and AOM revealed that bioclimatic factors, topography and precipitation play a significant role in the survival of Paphiopedilum populations in northeastern India in both the current and historical distributions. The other vital environmental variables were elevation (h_dem), mean diurnal range (bio_2), annual mean temperature (bio_1), temperature annual range (bio_5) and annual precipitation (bio_12). The results showed a sharp decline in the extent of occurrence and the area of occupancy of Paphiopedilum in the study area. The extent of occurrence and area of occupancy for HOM were 170,972 km2 and 18 km2. For the AOM, they were 125,315 km2 and 12 km2, respectively. The HOM model indicated that Paphiopedilum was earlier growing sporadically. On the other hand, the AOM result indicates that it is presently growing sparsely in isolated pockets that are more prone to extinction. Paphiopedilum can be conserved successfully using an integrative conservation approach, comprising ecological modeling techniques to search for additional locations, ex situ propagation techniques, and possible reintroduction in selected areas.
Collapse
|
5
|
Peng X, Ye H, Liu H, Zhao Z, Hu G, Zhao P. Characterization of the complete chloroplast genome of orchid family species Paphiopedilum bellatulum. Mitochondrial DNA B Resour 2022; 7:1310-1312. [PMID: 35874282 PMCID: PMC9297714 DOI: 10.1080/23802359.2022.2096417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The genus Paphiopedilum is well known as the lady’s slipper orchid in Orchidaceae family. Paphiopedilum bellatulum (Rchb.f.) Stein 1892, has important medicinal and ornamental value, which occurs in the tropical Asia. However, in recent decades, it was threatened with extinction by significantly reduced small population size. In this study, we sequenced and characterized the complete chloroplast genome of P. bellatulum based on the Illumina Hiseq platform. The size of P. bellatulum chloroplast genome was 156,567 bp, including a large single-copy (LSC) region of 88,243 bp, a small single-copy (SSC) region of 3652 bp, and two inverted repeat regions (IRs) of 32,336 bp. The overall GC contents of the chloroplast genome were 35.71%. A total of 122 genes were annotated, including 76 protein-coding genes, 38 transfer RNAs (tRNAs), and eight ribosomal RNAs (rRNAs). The phylogenetic analysis indicated that P. bellatulum formed a close relationship with another Paphiopedilum species P. wenshanense. The results will provide helpful genetic resource for further phylogenetic studies of the genus Paphiopedilum.
Collapse
Affiliation(s)
- Xiaobang Peng
- College of Urban, Rural Planning and Architectural Engineering, Shangluo University, Shangluo, China
| | - Hang Ye
- College of Life Sciences, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Hengzhao Liu
- College of Life Sciences, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Zixin Zhao
- Accademia di Belle, Arti di Milano “Brera”, Milano, Italy
| | - Guojia Hu
- College of Life Sciences, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| | - Peng Zhao
- College of Life Sciences, Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Northwest University, Xi’an, China
| |
Collapse
|
6
|
Comparative Analyses of Chloroplast Genomes Provide Comprehensive Insights into the Adaptive Evolution of Paphiopedilum (Orchidaceae). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050391] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An elucidation of how the selection pressures caused by habitat environments affect plant plastid genomes and lead to the adaptive evolution of plants, is a very intense area of research in evolutionary biology. The genus Paphiopedilum is a predominant group of orchids that includes over 66 species with high horticultural and ornamental value. However, owing to the destructive exploitation and habitat deterioration of wild germplasm resources of Paphiopedilum, it needs more molecular genetic resources and studies on this genus. The chloroplast is cytoplasmically inherited and often used in evolutionary studies. Thus, for this study, we newly sequenced, assembled and annotated five chloroplast genomes of the Paphiopedilum species. The size of these genomes ranged from 155,886 bp (P. henryanum) to 160,503 bp (P. ‘GZSLKY’ Youyou) and they contained 121–122 genes, which consisted of 76 protein coding genes, eight ribosomal RNAs, and 37–38 transfer RNAs. Combined with the other 14 Paphiopedilum species, the characteristics of the repeat sequences, divergent hotspot regions, and the condo usage bias were evaluated and identified, respectively. The gene transfer analysis showed that some fragments of the ndh and ycf gene families were shared by both the chloroplast and nucleus. Although the genomic structure and gene content was conserved, there was a significant boundary shift caused by the inverted repeat (IR) expansion and small single copy (SSC) contraction. The lower GC content and loss of ndh genes could be the result of adaptive evolutionary responses to its unique habitats. The genes under positive selection, including accD, matK, psbM, rpl20, rps12, ycf1, and ycf2 might be regarded as potential candidate genes for further study, which significantly contribute to the adaptive evolution of Paphiopedilum.
Collapse
|