1
|
Barboza LGA, Lourenço SC, Aleluia A, Senes GP, Otero XL, Guilhermino L. Are microplastics a new cardiac threat? A pilot study with wild fish from the North East Atlantic Ocean. ENVIRONMENTAL RESEARCH 2024; 261:119694. [PMID: 39068971 DOI: 10.1016/j.envres.2024.119694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Global environmental contamination by microplastics (MPs) is a growing problem with potential One Health impacts. The presence of MPs in vital organs, such as the heart, is of particular concern, but the knowledge is still limited. The goal of the present pilot study was to investigate the potential presence of MPs in the heart of wild specimens of three commercial fish species (Merluccius merluccius, Sardina pilchardus, and Trisopterus luscus) from the North East Atlantic Ocean. Heart samples from 154 fish were analysed for MP content (one heart sample per fish). A total of 44 MPs were recovered from heart samples from the three species. MPs had varied chemical composition (5 polymers), shapes (4) and colours (5). Differences in the profile of the MPs among species was observed (p ≤ 0.05). Thirty fish (19%) had MPs in their hearts, with a total mean (±SD) concentration of 0.286 ± 0.644 MPs/fish. S. pilchardus had the highest heart contamination (p ≤ 0.05). There were no significant (p > 0.05) differences between M. merluccius and T. luscus. These findings in fish with different biological and ecological traits together with literature data suggest that heart contamination likely is a disseminated phenomenon. Therefore, further research on the presence of MPs in the cardiovascular system and its potential health effects is very much needed.
Collapse
Affiliation(s)
- Luís Gabriel A Barboza
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | - Sara Couto Lourenço
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Alexandre Aleluia
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Giovanni Paolo Senes
- CRETUS, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela 15782, Spain
| | - Xosé L Otero
- CRETUS, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela 15782, Spain; REBUSC, Network of biological stations of the University of Santiago de Compostela, Marine Biology Station A Graña, Ferrol, Spain; RIAIDT, The Network of Infrastructures to Support Research and Technological Development of the University of Santiago de Compostela, Edificio Cactus, Campus Vida, Santiago de Compostela, 15782, Spain.
| | - Lúcia Guilhermino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Departamento de Estudos de Populações, Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
2
|
Lozano-Hernández EA, Ramírez-Álvarez N, Rios Mendoza LM, Macías-Zamora JV, Mejía-Trejo A, Beas-Luna R, Hernández-Guzmán FA. Kelp forest food webs as hot spots for the accumulation of microplastic and polybrominated diphenyl ether pollutants. ENVIRONMENTAL RESEARCH 2024; 257:119299. [PMID: 38824984 DOI: 10.1016/j.envres.2024.119299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/08/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Kelp forests (KFs) are one of the most significant marine ecosystems in the planet. They serve as a refuge for a wide variety of marine species of ecological and economic importance. Additionally, they aid with carbon sequestration, safeguard the coastline, and maintain water quality. Microplastic (MP) and polybrominated diphenyl ethers (PBDEs) concentrations were analyzed across trophic levels in KFs around Todos Santos Bay. Spatial variation patterns were compared at three sites in 2021 and temporal change at Todos Santos Island (TSI) in 2021 and 2022. We analyzed these MPs and PBDEs in water, primary producers (Macrocystis pyrifera), grazers (Strongylocentrotus purpuratus), predators (Semicossyphus pulcher), and kelp detritus. MPs were identified in all samples (11 synthetic and 1 semisynthetic polymer) and confirmed using Fourier-transform infrared microspectroscopy-attenuated total reflectance (μ-FTIR-ATR). The most abundant type of MP is polyester fibers. Statistically significant variations in MP concentration were found only in kelps, with the greatest average concentrations in medium-depth kelps from TSI in 2022 (0.73 ± 0.58 MP g-1 ww) and in the kelp detritus from TSI in 2021 (0.96 ± 0.64 MP g-1 ww). Similarly, PBDEs were found in all samples, with the largest concentration found in sea urchins from Punta San Miguel (0.93 ± 0.24 ng g-1 ww). The similarity of the polymers can indicate a trophic transfer of MPs. This study shows the extensive presence of MP and PBDE subtropical trophic web of a KF, but correlating these compounds in environmental samples is highly complex, influenced by numerous factors that could affect their presence and behavior. However, this suggests that there is a potential risk to the systems and the services that KFs offer.
Collapse
Affiliation(s)
- Eduardo Antonio Lozano-Hernández
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Carretera Tijuana-Ensenada 3917, Colonia Playitas, Ensenada, B.C., Mexico. C.P. 22860.
| | - Nancy Ramírez-Álvarez
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Carretera Tijuana-Ensenada 3917, Colonia Playitas, Ensenada, B.C., Mexico. C.P. 22860.
| | | | - José Vinicio Macías-Zamora
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Carretera Tijuana-Ensenada 3917, Colonia Playitas, Ensenada, B.C., Mexico. C.P. 22860.
| | - Adán Mejía-Trejo
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Carretera Tijuana-Ensenada 3917, Colonia Playitas, Ensenada, B.C., Mexico. C.P. 22860.
| | - Rodrigo Beas-Luna
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Carretera Tijuana-Ensenada 3917, Colonia Playitas, Ensenada, B.C., Mexico. C.P. 22860.
| | - Félix Augusto Hernández-Guzmán
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Carretera Tijuana-Ensenada 3917, Colonia Playitas, Ensenada, B.C., Mexico. C.P. 22860.
| |
Collapse
|
3
|
Santonicola S, Volgare M, Rossi F, Castaldo R, Cocca M, Colavita G. Detection of fibrous microplastics and natural microfibers in fish species (Engraulis encrasicolus, Mullus barbatus and Merluccius merluccius) for human consumption from the Tyrrhenian sea. CHEMOSPHERE 2024; 363:142778. [PMID: 38971436 DOI: 10.1016/j.chemosphere.2024.142778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/17/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
The occurrence of natural/artificial and synthetic microfibers was assessed in three commercial fish species (Engraulis encrasicolus, Mullus barbatus, Merluccius merluccius) from the Tyrrhenian Sea sold for human consumption. The gastrointestinal tracts of n. 150 samples were analyzed, the isolated microfibers were classified applying a morphological approach, based on the analysis of their morphological features, coupled with the identification of the chemical composition of a subsample of microfibers. All the species contained microfibers at levels ranging from 0 to 49 items/individual and the number of ingested microfibers significantly differed between pelagic and demersal fishes. The evaluation of fiber morphologies highlighted that natural/artificial microfibers were the most numerous among the isolated microfibers, while the dominant colors were blue, black, and clear in all the species. Chemical characterization confirmed the morphological identification and indicated cellulose and polyester as the most common polymer types. Considering the analytical issues that may affect the evaluation of microfiber pollution, the results pointed out the importance of an accurate morphological approach that allows the distinction between different fiber types, before the spectroscopic analyses. Moreover, the implementation of fast and accessible methods to identify microfibers in fish species intended for human consumption will be beneficial also to make an adequate risk assessment to consumer health.
Collapse
Affiliation(s)
- Serena Santonicola
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Santis, 86100, Campobasso, Italy; Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Michela Volgare
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, 80125, Naples, Italy
| | - Franca Rossi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e Molise (IZSAM), Teramo, Diagnostic Laboratory, 86100, Campobasso, Italy
| | - Rachele Castaldo
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy
| | - Mariacristina Cocca
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078, Pozzuoli, NA, Italy.
| | - Giampaolo Colavita
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Via F. De Santis, 86100, Campobasso, Italy
| |
Collapse
|
4
|
Bilbao-Kareaga A, Calvache D, Sargsyan R, Ardura A, Garcia-Vazquez E. In-depth analysis of microplastics reported from animal and algae seafood species: Implications for consumers and environmental health. MARINE POLLUTION BULLETIN 2024; 206:116742. [PMID: 39059219 DOI: 10.1016/j.marpolbul.2024.116742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Macroalgae are able to retain environmental microplastics (MPs). The potential ingestion of MP through Atlantic agar Gelidium corneum and different animal species (hake, glass eels, mussels, topshells, anemones, sea cucumbers) that are seafood resources in Spain, was estimated from published MPs data calculating daily dose and annual ingestion rate. The study region was Asturias (SW Bay of Biscay). Lower MP ingestion rate from algae than from any animal analysed revealed a reduced risk of MP intake, probably because the alga is harvested from quite clean subtidal zones. However, MP bioconcentration in Atlantic agar was higher than in sea cucumbers, mussels or glass eels. Compared with other algae, G. corneum ranked the highest for MP retention rate, perhaps for its intricate branching and gelatinous surface, suggesting a possible use in MP bioremediation. More experimental studies in MP uptake by macroalgae are recommended to understand their implication in the accumulation of this pollutant.
Collapse
Affiliation(s)
- Amaia Bilbao-Kareaga
- University of Oviedo, Department of Functional Biology, C/Julian Claveria s/n, 33006 Oviedo, Spain
| | - Diana Calvache
- University of Oviedo, Department of Functional Biology, C/Julian Claveria s/n, 33006 Oviedo, Spain
| | - Roza Sargsyan
- University of Oviedo, Department of Functional Biology, C/Julian Claveria s/n, 33006 Oviedo, Spain
| | - Alba Ardura
- University of Oviedo, Department of Functional Biology, C/Julian Claveria s/n, 33006 Oviedo, Spain
| | - Eva Garcia-Vazquez
- University of Oviedo, Department of Functional Biology, C/Julian Claveria s/n, 33006 Oviedo, Spain.
| |
Collapse
|
5
|
Li C, Li X, Bank MS, Dong T, Fang JKH, Leusch FDL, Rillig MC, Wang J, Wang L, Xia Y, Xu EG, Yang Y, Zhang C, Zhu D, Liu J, Jin L. The "Microplastome" - A Holistic Perspective to Capture the Real-World Ecology of Microplastics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4060-4069. [PMID: 38331396 PMCID: PMC10919093 DOI: 10.1021/acs.est.3c08849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Microplastic pollution, an emerging pollution issue, has become a significant environmental concern globally due to its ubiquitous, persistent, complex, toxic, and ever-increasing nature. As a multifaceted and diverse suite of small plastic particles with different physicochemical properties and associated matters such as absorbed chemicals and microbes, future research on microplastics will need to comprehensively consider their multidimensional attributes. Here, we introduce a novel, conceptual framework of the "microplastome", defined as the entirety of various plastic particles (<5 mm), and their associated matters such as chemicals and microbes, found within a sample and its overall environmental and toxicological impacts. As a novel concept, this paper aims to emphasize and call for a collective quantification and characterization of microplastics and for a more holistic understanding regarding the differences, connections, and effects of microplastics in different biotic and abiotic ecosystem compartments. Deriving from this lens, we present our insights and prospective trajectories for characterization, risk assessment, and source apportionment of microplastics. We hope this new paradigm can guide and propel microplastic research toward a more holistic era and contribute to an informed strategy for combating this globally important environmental pollution issue.
Collapse
Affiliation(s)
- Changchao Li
- Environment
Research Institute, Shandong University, Qingdao 266237, China
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong
| | - Xinyu Li
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong
| | - Michael S. Bank
- Institute
of Marine Research, 5005 Bergen, Norway
- University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Tao Dong
- Department
of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - James Kar-Hei Fang
- Department
of Food Science and Nutrition and Research Institute for Future Food, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong
- State Key
Laboratory of Marine Pollution, City University
of Hong Kong, Kowloon Tong 999077, Hong Kong
| | - Frederic D. L. Leusch
- Australian
Rivers Institute, School of Environment and Science, Griffith University, Gold Coast, 4222 Queensland, Australia
| | | | - Jie Wang
- Beijing
Key Laboratory of Farmland Soil Pollution Prevention and Remediation,
College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Wang
- MOE Key
Laboratory of Pollution Processes and Environmental Criteria, College
of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Xia
- School
of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Elvis Genbo Xu
- Department
of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Yuyi Yang
- Key Laboratory
of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430070, China
| | - Chao Zhang
- Environment
Research Institute, Shandong University, Qingdao 266237, China
| | - Dong Zhu
- Key Laboratory
of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jian Liu
- Environment
Research Institute, Shandong University, Qingdao 266237, China
| | - Ling Jin
- Department
of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong
- State Key
Laboratory of Marine Pollution, City University
of Hong Kong, Kowloon Tong 999077, Hong Kong
- Department
of Health Technology and Informatics, The
Hong Kong Polytechnic University, Kowloon 999077, Hong Kong
| |
Collapse
|
6
|
Protyusha GB, B K, Robin RS, A N, Ineyathendral TR, Shivani SS, I A, Sivasamy S, Samuel VD, R P. Microplastics in oral healthcare products (OHPs) and their environmental health risks and mitigation measures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123118. [PMID: 38092338 DOI: 10.1016/j.envpol.2023.123118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023]
Abstract
The environmental input of microplastics from personal care products has received significant attention; however, less focus has been paid to oral healthcare products. The present study assessed the occurrence of microplastics in commercially available oral healthcare products such as toothbrushes, toothpastes, toothpowder, mouthwash, dental floss, and mouth freshener spray that have a pan-India distribution. The extracted microplastics were quantified and characterised using a microscope and ATR-FTIR. All products showed microplastic contamination, where toothbrushes showed the maximum particles (30-120 particles/brush) and mouth freshener sprays (0.2-3.5 particles/ml) had the least abundance. Fragments, fibres, beads, and films were the various shapes of microplastics observed, where fragments (60%) were dominant. Various colours such as pink, green, blue, yellow, black, and colourless were observed, where colourless (40%) particles were dominant. Microplastics were categorized into three sizes: <0.1 mm (63%), 0.1-0.3 mm (35%), and >0.3 mm (2%). Four major types of polymers, such as polyethylene (52%), polyamide (30%), polyethylene terephthalate (15%), and polybutylene terephthalate (3%), were identified. Risk assessment studies such as Daily Microplastics Emission (DME), Annual Microplastics Exposure (AME), and Polymer Hazard Index (PHI) were carried out. The DME projection for India was the highest for mouthwash (74 billion particles/day) and the least for mouth freshener sprays (0.36 billion particles/day). The AME projection for an individual was the highest in toothbrushes (48,910 particles ind.-1 yr.-1) and the least in mouth freshener sprays (111 particles ind.-1 yr.-1). PHI shows that the identified polymers fall under the low-to high-risk categories. This study forecasts the community health risks linked to microplastics in oral healthcare products and suggests mitigation strategies. It has the potential to shape environmental policy development in response.
Collapse
Affiliation(s)
- G B Protyusha
- Department of Oral Pathology and Microbiology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, 600095, India.
| | - Kavitha B
- Department of Oral Pathology and Microbiology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, 600095, India
| | - R S Robin
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - Nithin A
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | | | - S Shruthi Shivani
- Department of Oral Pathology and Microbiology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, 600095, India
| | - Anandavelu I
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - Shyam Sivasamy
- Department of Oral Pathology and Microbiology, Meenakshi Ammal Dental College and Hospital, Meenakshi Academy of Higher Education and Research, Chennai, 600095, India
| | - V Deepak Samuel
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| | - Purvaja R
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai, 600 025, India
| |
Collapse
|
7
|
Shu R, Li Z, Gao S, Zhang S, Yu W. Occurrence and accumulation of microplastics in commercial fish in the coastal waters of the Lvsi fishing ground in China. MARINE POLLUTION BULLETIN 2023; 194:115181. [PMID: 37542947 DOI: 10.1016/j.marpolbul.2023.115181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 08/07/2023]
Abstract
In recent years, there has been an exponential increase in the research popularity of microplastics (MPs) in offshore marine environments. However, there is still a gap in the research on the accumulation of MPs in different tissues of aquatic organisms and the trophic transfer of MPs between aquatic organisms. The common occurrence of MPs in the gills and guts of 11 species of commercial fishes was examined in the coastal waters of the Lvsi fishing ground (LSFG). The obtained results showed that >85 % of MPs existed in the gills and guts of these fish, and the abundance was 2.39 ± 1.38 pieces/fish and 2.56 ± 1.42 pieces/fish, respectively. Fibrous and blue are the most common colors and shapes of MPs, and PET is the main polymer type. At the species level, the abundance of MPs in the gills and guts of a few fishes (e.g., Larimichthys polyactis, Setipinna tenuifilis, Collichthys lucidus) decreased with increasing body length and body weight (P < 0.05). At the community level, this situation was not significant (P > 0.05). With increasing trophic level (TL), MPs tended to decrease in the gills (trophic magnification factor, TMF = 0.86) but did not significantly vary in the gut. We believe that MPs are multidimensional pollutants, and their accumulation in tissues/organs of organisms has not been accurately and qualitatively determined. To establish the relationship of MP transport and trophic transfer among water, sediments and organisms, we suggest that more efforts should be made to investigate MPs in aquatic organisms in the coastal waters of LSFG and to increase the examination of MPs in the water column and sediments. This study will help us improve our understanding of MPs pollution, and provide a good reference and basis for the management, monitoring and implementation of pollutants in marine organism of coastal water.
Collapse
Affiliation(s)
- Ruilin Shu
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Zheng Li
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Shike Gao
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China
| | - Shuo Zhang
- College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China; Joint Laboratory for Monitoring and Conservation of Aquatic Living Resources In the Yangtze Estuary, Shanghai 200000, China.
| | - Wenwen Yu
- Jiangsu Research Institute of Marine Fisheries, Nantong 226007, China.
| |
Collapse
|
8
|
Menéndez D, Blanco-Fernandez C, Machado-Schiaffino G, Ardura A, Garcia-Vazquez E. High microplastics concentration in liver is negatively associated with condition factor in the Benguela hake Merluccius polli. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115135. [PMID: 37320916 DOI: 10.1016/j.ecoenv.2023.115135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) affect both marine and terrestrial biota worldwide for their harmful effects, which range from physical cell damage to physiological deterioration. In this research, microplastics were quantified from gills, liver and muscle of demersal Benguela hakes Merluccius polli (n = 94), caught by commercial trawling from northwest African waters. Plastic polymers were identified using Fourier Transformed-infraRed spectroscopy (FT-iR). Fulton's k condition factor and the degree of DNA degradation in liver were measured. None of the individuals were free of MPs, whose concentration ranged from 0.18 particles/g in muscle to 0.6 in liver. Four hazardous polymers were identified: 2-ethoxyethylmethacrylate, polyester, polyethylene terephthalate, and poly-acrylics. MP concentration in liver was correlated negatively with the condition factor, suggesting physiological damage. Positive association of MP concentration and liver DNA degradation was explained from cell breakage during trawl hauls during decompression, suggesting an additional way of MPs harm in organisms inhabiting at great depth. This is the first report of potential MPs-driven damage in this species; more studies are recommended to understand the impact of MP pollution on demersal species.
Collapse
Affiliation(s)
- Daniel Menéndez
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, C/ Julian Claveria s/n, 33006 Oviedo, Spain
| | - Carmen Blanco-Fernandez
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, C/ Julian Claveria s/n, 33006 Oviedo, Spain
| | - Gonzalo Machado-Schiaffino
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, C/ Julian Claveria s/n, 33006 Oviedo, Spain
| | - Alba Ardura
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, C/ Julian Claveria s/n, 33006 Oviedo, Spain
| | - Eva Garcia-Vazquez
- Department of Functional Biology, Faculty of Medicine, University of Oviedo, C/ Julian Claveria s/n, 33006 Oviedo, Spain.
| |
Collapse
|
9
|
Santonicola S, Volgare M, Cocca M, Dorigato G, Giaccone V, Colavita G. Impact of Fibrous Microplastic Pollution on Commercial Seafood and Consumer Health: A Review. Animals (Basel) 2023; 13:1736. [PMID: 37889673 PMCID: PMC10252135 DOI: 10.3390/ani13111736] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 10/15/2023] Open
Abstract
The omnipresence of microfibers in marine environments has raised concerns about their availability to aquatic biota, including commercial fish species. Due to their tiny size and wide distribution, microfibers may be ingested by wild-captured pelagic or benthic fish and farmed species. Humans are exposed via seafood consumption. Despite the fact that research on the impact of microfibers on marine biota is increasing, knowledge on their role in food security and safety is limited. The present review aims to examine the current knowledge about microfiber contamination in commercially relevant fish species, their impact on the marine food chain, and their probable threat to consumer health. The available information suggests that among the marine biota, edible species are also contaminated, but there is an urgent need to standardize data collection methods to assess the extent of microfiber occurrence in seafood. In this context, natural microfibers should also be investigated. A multidisciplinary approach to the microfiber issue that recognizes the interrelationship and connection of environmental health with that of animals and humans should be used, leading to the application of strategies to reduce microfiber pollution through the control of the sources and the development of remediation technologies.
Collapse
Affiliation(s)
- Serena Santonicola
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Michela Volgare
- Department of Chemical Engineering, Materials, and Industrial Production, University of Naples Federico II, P. Tecchio 80, 80125 Naples, Italy;
| | - Mariacristina Cocca
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | | | - Valerio Giaccone
- Department of Animal Medicine, Productions and Health, University of Padova, Viale dell’Università, 16, 35020 Legnaro, Italy;
| | - Giampaolo Colavita
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
10
|
Bilbao-Kareaga A, Menendez D, Peón P, Ardura A, Garcia-Vazquez E. Microplastics in jellifying algae in the Bay of Biscay. Implications for consumers' health. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
11
|
Rodríguez-Pérez C, Sáenz de Rodrigáñez M, Pula HJ. Occurrence of nano/microplastics from wild and farmed edible species. Potential effects of exposure on human health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 103:273-311. [PMID: 36863837 DOI: 10.1016/bs.afnr.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
The occurrence of nano/microplastics (N/MPs) has become a global concern due to their risk on the aquatic environment, food webs and ecosystems, thus, potentially affecting human health. This chapter focuses on the most recent evidence about the occurrence of N/MPs in the most consumed wild and farmed edible species, the occurrence of N/MPs in humans, the potential impact of N/MPs on human health as well as future research recommendations for assessing N/MPs in wild and farmed edible species. Additionally, the N/MP particles in human biological samples, which include the standardization of methods for collection, characterization, and analysis of N/MPs that might allow evaluating the potential risk of the intake of N/MPs in human health, are discussed. Thus, the chapter consequently includes relevant information about the content of N/MPs of more than 60 edible species such as algae, sea cucumber, mussels, squids, crayfish, crabs, clams, and fishes.
Collapse
Affiliation(s)
- Celia Rodríguez-Pérez
- Department of Nutrition and Food Science, Faculty of Health Sciences, University of Granada (Melilla Campus), Melilla, Spain; Biomedical Research Centre, Institute of Nutrition and Food Technology (INYTA) 'José Mataix', University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain.
| | - Miguel Sáenz de Rodrigáñez
- Department of Physiology, Faculty of Health Sciences, University of Granada (Melilla Campus), Melilla, Spain
| | - Héctor J Pula
- Fish Nutrition and Feeding Research Group, Faculty of Science, University of Granada, Granada, Spain; Aula del Mar Cei-Mar of the University of Granada, Faculty of Sciences, Granada, Spain
| |
Collapse
|
12
|
Bošković N, Joksimović D, Bajt O. Microplastics in fish and sediments from the Montenegrin coast (Adriatic Sea): Similarities in accumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158074. [PMID: 35981574 DOI: 10.1016/j.scitotenv.2022.158074] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/12/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
The accumulation of microplastics (MPs) in the biotic and abiotic components of the marine environment poses a major threat to marine ecosystems worldwide. The objective of this study was to document, for the first time, differences in MP accumulation in the gastrointestinal tract of two commercially important fish species and to evaluate the possible correlation between MP accumulation in the biotic (fish) and abiotic (sediment) components of the marine environment of the Montenegrin coast (Adriatic Sea). Samples were collected from two areas of the Montenegrin coast, Boka Kotorska Bay and the coastal part of the open sea. The frequency of MP ingestion was 58.6 % for Mullus barbatus and 54 % for Merluccius merluccius, while the average number of ingested MPs was 2.9 ± 0.5 and 3.2 ± 1.0 items/individual, respectively. Average MP abundance in surface sediments from Boka Kotorska Bay and the coastal part of the open sea was 315 ± 45 and 435 ± 258 MPs/kg of dry sediment, respectively. Most MPs identified were filaments, followed by fragments and films, while the most abundant polymers found in fish and sediments samples were polypropylene and polyethylene. The present results indicate that MP pollution in the study area is reflected in the accumulation of MPs in the biotic (fish) and abiotic (sediment) components of the marine environment. Measures need to be taken to reduce the input of plastics/MPs into the marine environment.
Collapse
Affiliation(s)
- Neda Bošković
- Institute of Marine Biology, University of Montenegro, 85330, Put I Bokeljske brigade 68, Kotor, Montenegro.
| | - Danijela Joksimović
- Institute of Marine Biology, University of Montenegro, 85330, Put I Bokeljske brigade 68, Kotor, Montenegro
| | - Oliver Bajt
- National Institute of Biology, Marine Biology Station, Fornače 41, 6330 Piran, Slovenia; Faculty of Maritime Studies and Transport, University of Ljubljana, Pot pomorscakov 4, 6320 Portoroz, Slovenia
| |
Collapse
|
13
|
Sharma S, Sharma B, Dey Sadhu S. Microplastic profusion in food and drinking water: are microplastics becoming a macroproblem? ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:992-1009. [PMID: 35699396 DOI: 10.1039/d1em00553g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microplastics are extremely complex, and as the food chain comes full circle, it is dreaded that these could have a deleterious influence on humans. Although the risk of plastics to humans is not yet established, their occurrence in food and water destined for human consumption has been reported. The prevalence of micro-sized plastics in the ecosystem and living organisms, their trophic transfer along the food web, and the discernment of food species as competent indicators have become research priorities. The scale of the issue is massive, but what are the main culprits and causes, and could there be a solution in sight for this global problem? Despite the massive amount of research in the field, a collation of available data and pertinent hazard evaluation remains difficult. In order to identify the knowledge gaps and exposure pathways, several traits related to food chain assessment are presented with the goal of properly evaluating and managing this emerging risk. We apprehend three possible noxious consequences of small plastic particles, firstly, due to the plastic particles themselves; secondly, due to the extrication of tenacious organic pollutants adsorbed onto the plastics; and thirdly, due to the leaching of components such as monomers and additives from the plastics. The exigency for the standardization of protocols to bring about consistency in data collection and analysis, involving solutions, stakeholder costs, and benefits, are discussed. Harmonized methods will enable meticulous assessment of the impacts and threats that microplastics pose to the biota and increase the comparability between studies. We emphasize the contribution of the "honest broker" in science, providing an overarching analysis to devise the most viable solutions to microplastic pollution for private and public leadership to utilize.
Collapse
Affiliation(s)
- Shreya Sharma
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka Sec-3, Delhi, India
| | - Bhasha Sharma
- Department of Chemistry, Shivaji College, University of Delhi, India
| | - Susmita Dey Sadhu
- Department of Polymer Science, Bhaskaracharya College of Applied Sciences, Dwarka Sec-2, Delhi, India.
| |
Collapse
|