1
|
Venturini AM, Dias NMS, Gontijo JB, Yoshiura CA, Paula FS, Meyer KM, Nakamura FM, da França AG, Borges CD, Barlow J, Berenguer E, Nüsslein K, Rodrigues JLM, Bohannan BJM, Tsai SM. Increased soil moisture intensifies the impacts of forest-to-pasture conversion on methane emissions and methane-cycling communities in the Eastern Amazon. ENVIRONMENTAL RESEARCH 2022; 212:113139. [PMID: 35337832 DOI: 10.1016/j.envres.2022.113139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Climatic changes are altering precipitation patterns in the Amazon and may influence soil methane (CH4) fluxes due to the differential responses of methanogenic and methanotrophic microorganisms. However, it remains unclear if these climate feedbacks can amplify land-use-related impacts on the CH4 cycle. To better predict the responses of soil CH4-cycling microorganisms and emissions under altered moisture levels in the Eastern Brazilian Amazon, we performed a 30-day microcosm experiment manipulating the moisture content (original moisture; 60%, 80%, and 100% of field capacity - FC) of forest and pasture soils. Gas samples were collected periodically for gas chromatography analysis, and methanogenic archaeal and methanotrophic bacterial communities were assessed using quantitative PCR and metagenomics. Positive and negative daily CH4 fluxes were observed for forest and pasture, indicating that these soils can act as both CH4 sources and sinks. Cumulative emissions and the abundance of methanogenesis-related genes and taxonomic groups were affected by land use, moisture, and their interaction. Pasture soils at 100% FC had the highest abundance of methanogens and CH4 emissions, 22 times higher than forest soils under the same treatment. Higher ratios of methanogens to methanotrophs were found in pasture than in forest soils, even at field capacity conditions. Land use and moisture were significant factors influencing the composition of methanogenic and methanotrophic communities. The diversity and evenness of methanogens did not change throughout the experiment. In contrast, methanotrophs exhibited the highest diversity and evenness in pasture soils at 100% FC. Taken together, our results suggest that increased moisture exacerbates soil CH4 emissions and microbial responses driven by land-use change in the Amazon. This is the first report on the microbial CH4 cycle in Amazonian upland soils that combined one-month gas measurements with advanced molecular methods.
Collapse
Affiliation(s)
- Andressa M Venturini
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil; Princeton Institute for International and Regional Studies, Princeton University, Princeton, NJ, 08544, USA.
| | - Naissa M S Dias
- Environmental Biogeochemistry Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil
| | - Júlia B Gontijo
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil
| | - Caio A Yoshiura
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil
| | - Fabiana S Paula
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil; Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, São Paulo, SP, 05508-120, Brazil
| | - Kyle M Meyer
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA; Department of Integrative Biology, University of California - Berkeley, Berkeley, CA, 94720, USA
| | - Fernanda M Nakamura
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil
| | - Aline G da França
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil
| | - Clovis D Borges
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil
| | - Jos Barlow
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Erika Berenguer
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK; Environmental Change Institute, University of Oxford, Oxford, OX1 3QY, UK
| | - Klaus Nüsslein
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jorge L M Rodrigues
- Department of Land, Air, and Water Resources, University of California - Davis, Davis, CA, 95616, USA
| | - Brendan J M Bohannan
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, 97403, USA
| | - Siu M Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, SP, 13416-000, Brazil
| |
Collapse
|
2
|
Atmospheric Methane Consumption and Methanotroph Communities in West Siberian Boreal Upland Forest Ecosystems. FORESTS 2021. [DOI: 10.3390/f12121738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Upland forest ecosystems are recognized as net sinks for atmospheric methane (CH4), one of the most impactful greenhouse gases. Biological methane uptake in these ecosystems occurs due to the activity of aerobic methanotrophic bacteria. Russia hosts one-fifth of the global forest area, with the most extensive forest landscapes located in West Siberia. Here, we report seasonal CH4 flux measurements conducted in 2018 in three types of stands in West Siberian middle taiga–Siberian pine, Aspen, and mixed forests. High rates of methane uptake of up to −0.184 mg CH4 m−2 h−1 were measured by a static chamber method, with an estimated total growing season consumption of 4.5 ± 0.5 kg CH4 ha−1. Forest type had little to no effect on methane fluxes within each season. Soil methane oxidation rate ranged from 0 to 8.1 ng CH4 gDW−1 h−1 and was negatively related to water-filled pore space. The microbial soil communities were dominated by the Alpha- and Gammaproteobacteria, Acidobacteriota and Actinobacteriota. The major group of 16S rRNA gene reads from methanotrophs belonged to uncultivated Beijerinckiaceae bacteria. Molecular identification of methanotrophs based on retrieval of the pmoA gene confirmed that Upland Soil Cluster Alpha was the major bacterial group responsible for CH4 oxidation.
Collapse
|
3
|
Mateos-Rivera A, Øvreås L, Wilson B, Yde JC, Finster KW. Activity and diversity of methane-oxidizing bacteria along a Norwegian sub-Arctic glacier forefield. FEMS Microbiol Ecol 2019; 94:4956520. [PMID: 29617984 DOI: 10.1093/femsec/fiy059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 11/14/2022] Open
Abstract
Methane (CH4) is one of the most abundant greenhouse gases in the atmosphere and identification of its sources and sinks is crucial for the reliability of climate model outputs. Although CH4 production and consumption rates have been reported from a broad spectrum of environments, data obtained from glacier forefields are restricted to a few locations. We report the activities of methanotrophic communities and their diversity along a chronosequence in front of a sub-Arctic glacier using high-throughput sequencing and gas flux measurements. CH4 oxidation rates were measured in the field throughout the growing season during three sampling times at eight different sampling points in combination with laboratory incubation experiments. The overall results showed that the methanotrophic community had similar trends of increased CH4 consumption and increased abundance as a function of soil development and time of year. Sequencing results revealed that the methanotrophic community was dominated by a few OTUs and that a short-term increase in CH4 concentration, as performed in the field measurements, altered slightly the relative abundance of the OTUs.
Collapse
Affiliation(s)
- Alejandro Mateos-Rivera
- Department of Biology, University of Bergen, NO-5020, Bergen, Norway.,Faculty of Engineering and Science, Western Norway University of Applied Sciences, NO-6851, Sogndal, Norway
| | - Lise Øvreås
- Department of Biology, University of Bergen, NO-5020, Bergen, Norway.,University Centre in Svalbard, NO-9171, Longyearbyen, Norway
| | - Bryan Wilson
- Department of Biology, University of Bergen, NO-5020, Bergen, Norway
| | - Jacob C Yde
- Faculty of Engineering and Science, Western Norway University of Applied Sciences, NO-6851, Sogndal, Norway
| | - Kai W Finster
- Department of Bioscience, Aarhus University, DK-8000, Aarhus, Denmark.,Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, DK-8000, Aarhus, Denmark
| |
Collapse
|
4
|
Szafranek-Nakonieczna A, Wolińska A, Zielenkiewicz U, Kowalczyk A, Stępniewska Z, Błaszczyk M. Activity and Identification of Methanotrophic Bacteria in Arable and No-Tillage Soils from Lublin Region (Poland). MICROBIAL ECOLOGY 2019; 77:701-712. [PMID: 30171270 PMCID: PMC6469817 DOI: 10.1007/s00248-018-1248-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Methanotrophic bacteria are able to use methane (CH4) as a sole carbon and energy source. Photochemical oxidation of methane takes place in the stratosphere, whereas in the troposphere, this process is carried out by methanotrophic bacteria. On the one hand, it is known that the efficiency of biological CH4 oxidation is dependent on the mode of land use but, on the other hand, the knowledge of this impact on methanotrophic activity (MTA) is still limited. Thus, the aim of the study was to determine the CH4 oxidation ability of methanotrophic bacteria inhabiting selected arable and no-tillage soils from the Lublin region (Albic Luvisol, Brunic Arenosol, Haplic Chernozem, Calcaric Cambisol) and to identify bacteria involved in this process. MTA was determined based on incubation of soils in air with addition of methane at the concentrations of 0.002, 0.5, 1, 5, and 10%. The experiment was conducted in a temperature range of 10-30 °C. Methanotrophs in soils were identified by next-generation sequencing (NGS). MTA was confirmed in all investigated soils (in the entire range of the tested methane concentrations and temperatures, except for the arable Albic Luvisol). Importantly, the MTA values in the no-tillage soil were nearly two-fold higher than in the cultivated soils. Statistical analysis indicated a significant influence of land use, type of soil, temperature, and especially methane concentration (p < 0.05) on MTA. Metagenomic analysis confirmed the presence of methanotrophs from the genus Methylocystis (Alphaproteobacteria) in the studied soils (except for the arable Albic Luvisol). Our results also proved the ability of methanotrophic bacteria to oxidize methane although they constituted only up to 0.1% of the total bacterial community.
Collapse
Affiliation(s)
- Anna Szafranek-Nakonieczna
- Department of Biochemistry and Environmental Chemistry, Institute of Biotechnology, The John Paul II Catholic University of Lublin, 1 I Konstantynów Str, 20-708, Lublin, Poland.
| | - Agnieszka Wolińska
- Department of Biochemistry and Environmental Chemistry, Institute of Biotechnology, The John Paul II Catholic University of Lublin, 1 I Konstantynów Str, 20-708, Lublin, Poland
| | - Urszula Zielenkiewicz
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics PAS, 5a Pawińskiego Str, 02-106, Warsaw, Poland
| | - Agnieszka Kowalczyk
- Department of Biochemistry and Environmental Chemistry, Institute of Biotechnology, The John Paul II Catholic University of Lublin, 1 I Konstantynów Str, 20-708, Lublin, Poland
| | - Zofia Stępniewska
- Department of Biochemistry and Environmental Chemistry, Institute of Biotechnology, The John Paul II Catholic University of Lublin, 1 I Konstantynów Str, 20-708, Lublin, Poland
| | - Mieczysław Błaszczyk
- Department of Microbial Biology, Warsaw University of Life Sciences, Nowoursynowska 159 Str, 02-776, Warsaw, Poland
| |
Collapse
|
5
|
Nguyen NL, Yu WJ, Gwak JH, Kim SJ, Park SJ, Herbold CW, Kim JG, Jung MY, Rhee SK. Genomic Insights Into the Acid Adaptation of Novel Methanotrophs Enriched From Acidic Forest Soils. Front Microbiol 2018; 9:1982. [PMID: 30210468 PMCID: PMC6119699 DOI: 10.3389/fmicb.2018.01982] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/06/2018] [Indexed: 01/08/2023] Open
Abstract
Soil acidification is accelerated by anthropogenic and agricultural activities, which could significantly affect global methane cycles. However, detailed knowledge of the genomic properties of methanotrophs adapted to acidic soils remains scarce. Using metagenomic approaches, we analyzed methane-utilizing communities enriched from acidic forest soils with pH 3 and 4, and recovered near-complete genomes of proteobacterial methanotrophs. Novel methanotroph genomes designated KS32 and KS41, belonging to two representative clades of methanotrophs (Methylocystis of Alphaproteobacteria and Methylobacter of Gammaproteobacteria), were dominant. Comparative genomic analysis revealed diverse systems of membrane transporters for ensuring pH homeostasis and defense against toxic chemicals. Various potassium transporter systems, sodium/proton antiporters, and two copies of proton-translocating F1F0-type ATP synthase genes were identified, which might participate in the key pH homeostasis mechanisms in KS32. In addition, the V-type ATP synthase and urea assimilation genes might be used for pH homeostasis in KS41. Genes involved in the modification of membranes by incorporation of cyclopropane fatty acids and hopanoid lipids might be used for reducing proton influx into cells. The two methanotroph genomes possess genes for elaborate heavy metal efflux pumping systems, possibly owing to increased heavy metal toxicity in acidic conditions. Phylogenies of key genes involved in acid adaptation, methane oxidation, and antiviral defense in KS41 were incongruent with that of 16S rRNA. Thus, the detailed analysis of the genome sequences provides new insights into the ecology of methanotrophs responding to soil acidification.
Collapse
Affiliation(s)
- Ngoc-Loi Nguyen
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - Woon-Jong Yu
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - Joo-Han Gwak
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - So-Jeong Kim
- Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, South Korea
| | - Soo-Je Park
- Department of Biology, Jeju National University, Jeju City, South Korea
| | - Craig W Herbold
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Jong-Geol Kim
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| | - Man-Young Jung
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
6
|
Singh JS, Gupta VK. Degraded Land Restoration in Reinstating CH4 Sink. Front Microbiol 2016; 7:923. [PMID: 27379053 PMCID: PMC4905942 DOI: 10.3389/fmicb.2016.00923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 05/31/2016] [Indexed: 11/13/2022] Open
Abstract
Methane (CH4), a potent greenhouse gas, contributes about one third to the global green house gas emissions. CH4-assimilating microbes (mostly methanotrophs) in upland soils play very crucial role in mitigating the CH4 release into the atmosphere. Agricultural, environmental, and climatic shifts can alter CH4 sink profiles of soils, likely through shifts in CH4-assimilating microbial community structure and function. Landuse change, as forest and grassland ecosystems altered to agro-ecosystems, has already attenuated the soil CH4 sink potential, and are expected to be continued in the future. We hypothesized that variations in CH4 uptake rates in soils under different landuse practices could be an indicative of alterations in the abundance and/or type of methanotrophic communities in such soils. However, only a few studies have addressed to number and methanotrophs diversity and their correlation with the CH4 sink potential in soils of rehabilitated/restored lands. We focus on landuse practices that can potentially mitigate CH4 gas emissions, the most prominent of which are improved cropland, grazing land management, use of bio-fertilizers, and restoration of degraded lands. In this perspective paper, it is proposed that restoration of degraded lands can contribute considerably to improved soil CH4 sink strength by retrieving/conserving abundance and assortment of efficient methanotrophic communities. We believe that this report can assist in identifying future experimental directions to the relationships between landuse changes, methane-assimilating microbial communities and soil CH4 sinks. The exploitation of microbial communities other than methanotrophs can contribute significantly to the global CH4 sink potential and can add value in mitigating the CH4 problems.
Collapse
Affiliation(s)
- Jay Shankar Singh
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University Lucknow, India
| | - Vijai K Gupta
- Molecular Glyco-biotechnology Group, Discipline of Biochemistry, School of Natural Sciences, National University of Ireland Galway Galway, Ireland
| |
Collapse
|
7
|
Singh JS, Strong PJ. Biologically derived fertilizer: A multifaceted bio-tool in methane mitigation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 124:267-276. [PMID: 26547397 DOI: 10.1016/j.ecoenv.2015.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 06/05/2023]
Abstract
Methane emissions are affected by agricultural practices. Agriculture has increased in scale and intensity because of greater food, feed and energy demands. The application of chemical fertilizers in agriculture, particularly in paddy fields, has contributed to increased atmospheric methane emissions. Using organic fertilizers may improve crop yields and the methane sink potential within agricultural systems, which may be further improved when combined with beneficial microbes (i.e. biofertilizers) that improve the activity of methane oxidizing bacteria such as methanotrophs. Biofertilizers may be an effective tool for agriculture that is environmentally beneficial compared to conventional inorganic fertilizers. This review highlights and discusses the interplay between ammonia and methane oxidizing bacteria, the potential interactions of microbial communities with microbially-enriched organic amendments and the possible role of these biofertilizers in augmenting the methane sink potential of soils. It is suggested that biofertilizer applications should not only be investigated in terms of sustainable agriculture productivity and environmental management, but also in terms of their effects on methanogen and methanotroph populations.
Collapse
Affiliation(s)
- Jay Shankar Singh
- Department of Environmental Microbiology, BB Ambedkar (Central) University, Lucknow 226025, Uttar Pradesh, India.
| | - P J Strong
- Centre for Solid Waste Bioprocessing, School of Civil Engineering, School of Chemical Engineering, University of Queensland, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
8
|
Kizilova AK, Sukhacheva MV, Pimenov NV, Yurkov AM, Kravchenko IK. Methane oxidation activity and diversity of aerobic methanotrophs in pH-neutral and semi-neutral thermal springs of the Kunashir Island, Russian Far East. Extremophiles 2013; 18:207-18. [PMID: 24343375 DOI: 10.1007/s00792-013-0603-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/14/2013] [Indexed: 11/26/2022]
Abstract
Aerobic methane oxidation has been mostly studied in environments with moderate to low temperatures. However, the process also occurs in terrestrial thermal springs, where little research on the subject has been done to date. The potential activity of methane oxidation and diversity of aerobic methanotrophic bacteria were studied in sediments of thermal springs with various chemical and physical properties, sampled across the Kunashir Island, the Kuriles archipelago. Activity was measured by means of the radioisotope tracer technique utilizing (14)C-labeled methane. Biodiversity assessments were based on the particulate methane monooxygenase (pmoA) gene, which is found in all known thermophilic and thermotolerant methanotrophs. We demonstrated the possibility of methane oxidation in springs with temperature exceeding 74 °C, and the most intensive methane uptake was shown in springs with temperatures about 46 °C. PmoA was detected in 19 out of 30 springs investigated and the number of pmoA gene copies varied between 10(4) and 10(6) copies per ml of sediment. Phylogenetic analysis of PmoA sequences revealed the presence of methanotrophs from both the Alpha- and Gammaproteobacteria. Our results suggest that methanotrophs inhabiting thermal springs with temperature exceeding 50 °C may represent novel thermophilic and thermotolerant species of the genera Methylocystis and Methylothermus, as well as previously undescribed Gammaproteobacteria.
Collapse
Affiliation(s)
- A K Kizilova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117312, Moscow, Russia,
| | | | | | | | | |
Collapse
|