1
|
Tsermoula P, Rostved Bechshøft M, Friis C, Balling Engelsen S, Khakimov B. Molecular profiling of whey permeate reveals new insights into molecular affinities related to industrial unit operations during lactose production. Food Chem 2023; 420:136060. [PMID: 37086610 DOI: 10.1016/j.foodchem.2023.136060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/07/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023]
Abstract
Lactose powder production from whey permeate generates various side-streams. Molecular profiling of these side-streams and lactose powder can help to detect minor compounds affecting lactose crystallization, lactose powder properties and document the composition of the underutilized side-streams. In this study, whey permeate, lactose powder and intermediate streams from trial lactose productions were analyzed using gas chromatography-mass spectrometry (GC-MS) and proton nuclear magnetic resonance (1H NMR) spectroscopy. In total, 110 compounds were identified and 49 were quantified. Linking the molecular profiles to in-process steps revealed differential compositional attenuation by the unit operations. Small molecules (e.g. methanol) and a few larger molecules (e.g. fatty acids) permeated reverse osmosis membrane, while twenty-three compounds (e.g. hydroxypyruvic acid, malonic acid, gluconic acid and ribonic acid) co-crystallized with lactose and ended up in lactose power. These results help to better understand and control lactose powder production and highlights possibilities to develop new food ingredients.
Collapse
|
2
|
Peng Q, Yang J, Wang Q, Suo H, Hamdy AM, Song J. Antifungal Effect of Metabolites from a New Strain Lactiplantibacillus Plantarum LPP703 Isolated from Naturally Fermented Yak Yogurt. Foods 2023; 12:foods12010181. [PMID: 36613401 PMCID: PMC9818598 DOI: 10.3390/foods12010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
The antifungal effect of metabolites produced by a new strain of Lactiplantibacillus (Lpb.) plantarum LPP703, isolated from naturally fermented yak yogurt, was investigated. The results showed that Lpb. plantarum LPP703 significantly inhibited four fungal species, including Penicillium sp., Rhizopus delemar, Aspergillus flavus, and Aspergillus niger. The metabolites produced after 20 h of Lpb. plantarum LPP703 fermentation showed the highest antifungal activity against Penicillium sp. Compared with the control group, the Lpb. plantarum LPP703 metabolites-treated Penicillium sp. spores were stained red by propidium iodide, indicating that the cell membrane of the fungal spores was damaged. Moreover, the antifungal effect of the Lpb. plantarum LPP703 metabolites on Penicillium sp. was not changed after heating or treatment with various proteases, but showed a sharp decrease when the pH value was regulated to 5.0 or above. The oleamide, trans-cinnamic acid, and citric acid were the three most abundant in the Lpb. plantarum LPP703 metabolites. Molecular docking predicated that the oleamide interacted with the active site of lanosterol 14-alpha-demethylase (CYP51, a crucial enzyme for fungal membrane integrity) through hydrogen bonds and had the lowest docking score, representing the strongest binding affinity to CYP51. Taken together, the metabolites from a new strain of Lpb. plantarum, LPP703, had potent antifungal activity against Penicillium sp., which might be associated with the damage of the active ingredient to fungal membrane integrity. This study indicated that Lpb. plantarum LPP703 and its metabolites might act as biological control agents to prevent fungal growth in the food industry.
Collapse
Affiliation(s)
- Qian Peng
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China
| | - Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing 400067, China
| | - Qiang Wang
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China
| | - Ahmed Mahmoud Hamdy
- Dairy Science Department, Faculty of Agriculture, Assiut University, Assiut 71526, Egypt
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China
- Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China
- Correspondence:
| |
Collapse
|
3
|
Inhibitory Effect of Lactiplantibacillusplantarum and Lactococcus lactis Autochtonous Strains against Listeria monocytogenes in a Laboratory Cheese Model. Foods 2022; 11:foods11050715. [PMID: 35267348 PMCID: PMC8909851 DOI: 10.3390/foods11050715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
In the present study, six Lactococcus lactis and seven Lactiplantibacillus plantarum strains isolated from artisanal Sardinian dairy products were evaluated for their efficacy in controlling the growth of Listeria monocytogenes during the storage of miniature fresh cheese manufactured on a laboratory scale to exploit their possible use as biopreservatives. The strains were tested for antimicrobial activity and some technological characteristics before using them in miniature fresh cheese to evaluate their in situ antilisterial effect. Our results showed that five strains (L. lactis 16FS16-9/20234-11FS16 and Lpb. plantarum 1/14537-4A/20045) could be considered suitable candidates for use as protective cultures in fresh cheese manufacture since they significantly lowered the pathogen counts by 3–4 log units compared to the control; however, all strains tested were capable of decreasing L. monocytogenes numbers. Our results suggest that the single and combined action of the acidifying power and the production of bacteriocin of these strains was capable of controlling and/or reducing the growth of L. monocytogenes. Considering their technological characteristics, they might be used as starter/adjunct cultures to increase the safety of the products, perhaps in association with other antimicrobial hurdles.
Collapse
|
4
|
Hyuk Suh J. Critical review: metabolomics in dairy science - evaluation of milk and milk product quality. Food Res Int 2022; 154:110984. [DOI: 10.1016/j.foodres.2022.110984] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
|
5
|
The Interactions among Isolates of Lactiplantibacillus plantarum and Dairy Yeast Contaminants: Towards Biocontrol Applications. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation8010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Yeast diversity in the cheese manufacturing process and in the cheeses themselves includes indispensable species for the production of specific cheeses and undesired species that cause cheese defects and spoilage. The control of yeast contaminants is problematic due to limitations in sanitation methods and chemicals used in the food industry. The utilisation of lactic acid bacteria and their antifungal products is intensively studied. Lactiplantibacillus plantarum is one of the most frequently studied species producing a wide spectrum of bioactive by-products. In the present study, twenty strains of L. plantarum from four sources were tested against 25 species of yeast isolated from cheeses, brines, and dairy environments. The functional traits of L. plantarum strains, such as the presence of class 2a bacteriocin and chitinase genes and in vitro production of organic acids, were evaluated. The extracellular production of bioactive peptides and proteins was tested using proteomic methods. Antifungal activity against yeast was screened using in vitro tests. Testing of antifungal activity on artificial media and reconstituted milk showed significant variability within the strains of L. plantarum and its group of origin. Strains from sourdoughs (CCDM 3018, K19-3) and raw cheese (L12, L24, L32) strongly inhibited the highest number of yeast strains on medium with reconstituted milk. These strains showed a consistent spectrum of genes belonging to class 2a bacteriocins, the gene of chitinase and its extracellular product 9 LACO Chitin-binding protein. Strain CCDM 3018 with the spectrum of class 2a bacteriocin gene, chitinase and significant production of lactic acid in all media performed significant antifungal effects in artificial and reconstituted milk-based media.
Collapse
|
6
|
Effectiveness of Lactobacilli cell-free supernatant and propolis extract microcapsules on oxidation and microbiological growth in sardine burger. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101417] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Innovation Meets Tradition in the Sheep and Goat Dairy Industry. DAIRY 2021. [DOI: 10.3390/dairy2030033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Small ruminants, such as sheep and goats, are mostly raised in smallholder farming systems widely distributed throughout the world [...]
Collapse
|