Pekov SI, Zhvansky ES, Eliferov VA, Sorokin AA, Ivanov DG, Nikolaev EN, Popov IA. Determination of Brain Tissue Samples Storage Conditions for Reproducible Intraoperative Lipid Profiling.
MOLECULES (BASEL, SWITZERLAND) 2022;
27:molecules27082587. [PMID:
35458785 PMCID:
PMC9029908 DOI:
10.3390/molecules27082587]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
Ex-vivo molecular profiling has recently emerged as a promising method for intraoperative tissue identification, especially in neurosurgery. The short-term storage of resected samples at room temperature is proposed to have negligible influence on the lipid molecular profiles. However, a detailed investigation of short-term molecular profile stability is required to implement molecular profiling in a clinic. This study evaluates the effect of storage media, temperature, and washing solution to determine conditions that provide stable and reproducible molecular profiles, with the help of ambient ionization mass spectrometry using rat cerebral cortex as model brain tissue samples. Utilizing normal saline for sample storage and washing media shows a positive effect on the reproducibility of the spectra; however, the refrigeration shows a negligible effect on the spectral similarity. Thus, it was demonstrated that up to hour-long storage in normal saline, even at room temperature, ensures the acquisition of representative molecular profiles using ambient ionization mass spectrometry.
Collapse