1
|
Emmanuel T, Ben Abdallah H, Baez E, Rather IM, Steiniche T, Bregnhøj A, Iversen L, Johansen C. Early Neutrophil Activation in Psoriatic Skin at Relapse Following Dead Sea Climatotherapy. Exp Dermatol 2025; 34:e70094. [PMID: 40181552 PMCID: PMC11969059 DOI: 10.1111/exd.70094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/19/2025] [Accepted: 03/20/2025] [Indexed: 04/05/2025]
Abstract
Psoriasis, a chronic inflammatory skin disorder characterised by erythematous and scaly plaques, can be both physically and emotionally distressing for patients. Dead Sea climatotherapy (DSC), a treatment modality combining sun exposure, mineral-rich water and mud therapy during 4 weeks at Ein Gedi, Israel, is used for a small group of patients with psoriasis. This study aimed to investigate the cellular composition of psoriatic skin lesions at relapse after complete clearance from DSC. Skin biopsies from baseline, end of treatment and relapse were collected from eight patients with plaque psoriasis who achieved complete clearance from Dead Sea climatotherapy treatment. These biopsies were subjected to immunohistochemistry, RNA sequencing and quantitative polymerase chain reaction analysis (qPCR). Our findings demonstrate that DSC effectively reduces inflammatory markers to levels comparable to baseline non-lesional skin in the short term. The differential expression analysis identified several upregulated differentially expressed genes, including OSM, CXCL8, TREM1, CXCL1, CSF3R, BCL2A1 and CXCL2, in relapsed psoriasis skin compared with baseline lesional skin. These findings were confirmed by qPCR analysis. Pathway enrichment analysis indicated a marked upregulation of neutrophil-associated pathways in relapse skin compared with baseline lesional skin. Immunohistochemical staining for neutrophil markers, such as CD11b, CD15, CD66b, CD207, MPO and NE, showed a non-significant trend towards enhanced neutrophil infiltration and activation at relapse. In conclusion, while DSC provides short-term effectiveness in managing psoriasis, the initial relapse phase is associated with neutrophil activation and migration. Thus, targeting neutrophils early in the psoriasis disease course may disturb the evolution of psoriasis, potentially preventing disease chronicity.
Collapse
Affiliation(s)
- Thomas Emmanuel
- Department of DermatologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus University HospitalAarhusDenmark
| | - Hakim Ben Abdallah
- Department of DermatologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus University HospitalAarhusDenmark
| | - Elena Baez
- Department of DermatologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus University HospitalAarhusDenmark
| | - Ida Maja Rather
- Department of DermatologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus University HospitalAarhusDenmark
| | | | - Anne Bregnhøj
- Department of DermatologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus University HospitalAarhusDenmark
| | - Lars Iversen
- Department of DermatologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus University HospitalAarhusDenmark
- MC2 Therapeutics A/SHoersholmDenmark
| | - Claus Johansen
- Department of DermatologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus University HospitalAarhusDenmark
| |
Collapse
|
2
|
Charoensuksira S, Tantiwong S, Pongklaokam J, Hanvivattanakul S, Surinlert P, Krajarng A, Thanasarnaksorn W, Hongeng S, Ponnikorn S. Disturbance of Immune Microenvironment in Androgenetic Alopecia through Spatial Transcriptomics. Int J Mol Sci 2024; 25:9031. [PMID: 39201715 PMCID: PMC11354591 DOI: 10.3390/ijms25169031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
Androgenetic alopecia (AGA) is characterized by microinflammation and abnormal immune responses, particularly in the upper segment of hair follicles (HFs). However, the precise patterns of immune dysregulation remain unclear, partly due to limitations in current analysis techniques to preserve tissue architecture. The infundibulum, a major part of the upper segment of HFs, is associated with significant clusters of immune cells. In this study, we investigated immune cells around the infundibulum, referred to as peri-infundibular immune infiltration (PII). We employed spatial transcriptome profiling, a high-throughput analysis technology, to investigate the immunological disruptions within the PII region. Our comprehensive analysis included an evaluation of overall immune infiltrates, gene set enrichment analysis (GSEA), cellular deconvolution, differential expression analysis, over-representation analysis, protein-protein interaction (PPI) networks, and upstream regulator analysis to identify cell types and molecular dysregulation in immune cells. Our results demonstrated significant differences in immune signatures between the PII of AGA patients (PII-A) and the PII of control donors (PII-C). Specifically, PII-A exhibited an enrichment of CD4+ helper T cells, distinct immune response patterns, and a bias toward a T helper (Th) 2 response. Immunohistochemistry revealed disruptions in T cell subpopulations, with more CD4+ T cells displaying an elevated Th2 response and a reduced Th1-cytotoxic response compared to PII-C. These findings reveal the unique immune landscapes of PII-A and PII-C, suggesting potential for the development of innovative treatment approaches.
Collapse
Affiliation(s)
- Sasin Charoensuksira
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (S.T.); (J.P.); (W.T.)
| | - Supasit Tantiwong
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (S.T.); (J.P.); (W.T.)
| | - Juthapa Pongklaokam
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (S.T.); (J.P.); (W.T.)
| | - Sirashat Hanvivattanakul
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (S.H.); (P.S.); (A.K.)
| | - Piyaporn Surinlert
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (S.H.); (P.S.); (A.K.)
- Research Unit in Synthesis and Applications of Graphene, Thammasat University, Pathum Thani 12120, Thailand
| | - Aungkana Krajarng
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (S.H.); (P.S.); (A.K.)
| | - Wilai Thanasarnaksorn
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (S.T.); (J.P.); (W.T.)
- Division of Dermatology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Saranyoo Ponnikorn
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (S.C.); (S.T.); (J.P.); (W.T.)
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand; (S.H.); (P.S.); (A.K.)
- Thammasat University, Pattaya Campus, Bang Lamung 20150, Thailand
| |
Collapse
|
3
|
Emmanuel T, Ignatov B, Bertelsen T, Litman T, Nielsen MM, Brent MB, Touborg T, Rønsholdt AB, Petersen A, Boye M, Kaaber I, Sortebech D, Lybæk D, Steiniche T, Bregnhøj A, Eidsmo L, Iversen L, Johansen C. Secukinumab and Dead Sea Climatotherapy Impact Resolved Psoriasis Skin Differently Potentially Affecting Disease Memory. Int J Mol Sci 2024; 25:6086. [PMID: 38892277 PMCID: PMC11172747 DOI: 10.3390/ijms25116086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Secukinumab and Dead Sea treatment result in clear skin for many psoriasis patients, through distinct mechanisms. However, recurrence in the same areas after treatments suggests the existence of a molecular scar. We aimed to compare the molecular and genetic differences in psoriasis patients who achieved complete response from secukinumab and Dead Sea climatotherapy treatments. We performed quantitative immunohistochemical and transcriptomic analysis, in addition to digital spatial profiling of skin punch biopsies. Histologically, both treatments resulted in a normalization of the lesional skin to a level resembling nonlesional skin. Interestingly, the transcriptome was not normalized by either treatments. We revealed 479 differentially expressed genes between secukinumab and Dead Sea climatotherapy at the end of treatment, with a psoriasis panel identifying SERPINB4, SERPINB13, IL36G, IL36RN, and AKR1B10 as upregulated in Dead Sea climatotherapy compared with secukinumab. Using digital spatial profiling, pan-RAS was observed to be differentially expressed in the microenvironment surrounding CD103+ cells, and IDO1 was differentially expressed in the dermis when comparing the two treatments. The differences observed between secukinumab and Dead Sea climatotherapy suggest the presence of a molecular scar, which may stem from mechanistically different pathways and potentially contribute to disease recurrence. This may be important for determining treatment response duration and disease memory.
Collapse
Affiliation(s)
- Thomas Emmanuel
- Department of Dermatology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.B.); (T.T.); (A.B.R.); (A.P.); (M.B.); (I.K.); (D.L.); (A.B.); (L.I.); (C.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
| | - Borislav Ignatov
- Department of Medicine, Karolinska Universitetssjukhuset, 171 76 Stockholm, Sweden; (B.I.); (D.S.); (L.E.)
| | - Trine Bertelsen
- Department of Dermatology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.B.); (T.T.); (A.B.R.); (A.P.); (M.B.); (I.K.); (D.L.); (A.B.); (L.I.); (C.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
| | - Thomas Litman
- Department of Immunology and Microbiology, Copenhagen University, 2200 Copenhagen, Denmark;
| | - Morten Muhlig Nielsen
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Mikkel Bo Brent
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark;
| | - Toke Touborg
- Department of Dermatology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.B.); (T.T.); (A.B.R.); (A.P.); (M.B.); (I.K.); (D.L.); (A.B.); (L.I.); (C.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
| | - Anders Benjamin Rønsholdt
- Department of Dermatology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.B.); (T.T.); (A.B.R.); (A.P.); (M.B.); (I.K.); (D.L.); (A.B.); (L.I.); (C.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
| | - Annita Petersen
- Department of Dermatology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.B.); (T.T.); (A.B.R.); (A.P.); (M.B.); (I.K.); (D.L.); (A.B.); (L.I.); (C.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
| | - Mette Boye
- Department of Dermatology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.B.); (T.T.); (A.B.R.); (A.P.); (M.B.); (I.K.); (D.L.); (A.B.); (L.I.); (C.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
| | - Ida Kaaber
- Department of Dermatology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.B.); (T.T.); (A.B.R.); (A.P.); (M.B.); (I.K.); (D.L.); (A.B.); (L.I.); (C.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
| | - Daniel Sortebech
- Department of Medicine, Karolinska Universitetssjukhuset, 171 76 Stockholm, Sweden; (B.I.); (D.S.); (L.E.)
| | - Dorte Lybæk
- Department of Dermatology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.B.); (T.T.); (A.B.R.); (A.P.); (M.B.); (I.K.); (D.L.); (A.B.); (L.I.); (C.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
| | - Torben Steiniche
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
- Department of Pathology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Anne Bregnhøj
- Department of Dermatology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.B.); (T.T.); (A.B.R.); (A.P.); (M.B.); (I.K.); (D.L.); (A.B.); (L.I.); (C.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
| | - Liv Eidsmo
- Department of Medicine, Karolinska Universitetssjukhuset, 171 76 Stockholm, Sweden; (B.I.); (D.S.); (L.E.)
- LEO Foundation Skin Immunology Research Center, 2200 Copenhagen, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.B.); (T.T.); (A.B.R.); (A.P.); (M.B.); (I.K.); (D.L.); (A.B.); (L.I.); (C.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, 8200 Aarhus, Denmark; (T.B.); (T.T.); (A.B.R.); (A.P.); (M.B.); (I.K.); (D.L.); (A.B.); (L.I.); (C.J.)
- Department of Clinical Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark; (M.M.N.); (T.S.)
| |
Collapse
|
4
|
Lin DA, Abujamra BA, Revah S, Nattkemper L, Morrison B, Romanelli P, Jozic I. Downregulation of Caveolae-Associated Proteins in Psoriasis: A Case Series Study. JID INNOVATIONS 2024; 4:100265. [PMID: 38445230 PMCID: PMC10914522 DOI: 10.1016/j.xjidi.2024.100265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 03/07/2024] Open
Abstract
We have previously identified that a structural membrane protein Caveolin-1 (Cav1) is involved in the regulation of aberrant keratinocyte proliferation and differentiation. The aim of this study was to elucidate the role of Cav1, Caveolin-2 (Cav2), and Cavin-1 in the pathogenesis of psoriasis vulgaris and between psoriasis subtypes. We utilized human biopsies from validated cases of psoriasis vulgaris (n = 21) at the University of Miami Hospital and compared the expression of Cav1, Cav2, and Cavin-1 by immunohistochemistry staining with that in normal healthy age-/sex-/location-matched skin (n = 15) and chronic spongiotic dermatitis skin samples (as control inflammatory skin condition) and quantified using QuPath. Distinct subtypes of psoriasis included guttate, inverse, nail, plaque, palmoplantar, and pustular. All biopsy samples exhibited a trend toward downregulation of Cav1, with nail, plaque, and palmoplantar psoriasis exhibiting the most pronounced effects. Only nail and pustular psoriasis samples exhibited significant downregulation of Cav2 and Cavin-1, suggesting Cav1 to be the main caveolar contributor to the pathogenesis of psoriasis. Together, these data support caveolae as pathophysiological targets in nail and pustular psoriasis, whereas Cav1 seems to be a general biomarker of multiple subtypes of psoriasis.
Collapse
Affiliation(s)
- Deborah A. Lin
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Beatriz Abdo Abujamra
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Stephanie Revah
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Leigh Nattkemper
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Brian Morrison
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Paolo Romanelli
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Ivan Jozic
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|