1
|
Pellegrini C, Ravaioli F, De Fanti S, Pirazzini C, D’Silva C, Garagnani P, Franceschi C, Bonifazi F, Zinzani PL, Bonafè M, Guarino M, Lodi R, Cortelli P, Tonon C, Mitolo M, Sambati L, Morandi L, Bacalini MG. Detection of Brain-Derived Cell-Free DNA in Plasma. Diagnostics (Basel) 2024; 14:2541. [PMID: 39594207 PMCID: PMC11592591 DOI: 10.3390/diagnostics14222541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Neuronal loss is a major pathological feature of neurodegenerative diseases. The analysis of plasma cell-free DNA (cfDNA) is an emerging approach to track cell death events in a minimally invasive way and from inaccessible areas of the body, such as the brain. Previous studies showed that DNA methylation (DNAm) profiles can be used to map the tissue of origin of cfDNA and to identify molecules released from the brain upon cell death. The aim of the present study is to contribute to this research field, presenting the development and validation of an assay for the detection of brain-derived cfDNA (bcfDNA). Methods: To identify CpG sites with brain-specific DNAm, we compared brain and non-brain tissues for their chromatin state profiles and genome-wide DNAm data, available in public datasets. The selected target genomic regions were experimentally validated by bisulfite sequencing on DNA extracted from 44 different autoptic tissues, including multiple brain regions. Sequencing data were analysed to identify brain-specific epihaplotypes. The developed assay was tested in plasma cfDNA from patients with immune effector cell-associated neurotoxicity syndrome (ICANS) following chimeric antigen receptor T (CAR-T) therapy. Results: We validated five genomic regions with brain-specific DNAm (four hypomethylated and one hypermethylated in the brain). DNAm analysis of the selected genomic regions in plasma samples from CAR-T patients revealed higher levels of bcfDNA in participants with ongoing neurotoxicity syndrome. Conclusions: We developed an assay for the analysis of bcfDNA in plasma. The assay is a promising tool for the early detection of neuronal loss in neurodegenerative diseases.
Collapse
Affiliation(s)
- Camilla Pellegrini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (C.P.); (F.R.); (S.D.F.); (M.G.); (R.L.); (P.C.); (C.T.); (L.S.); (L.M.)
| | - Francesco Ravaioli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (C.P.); (F.R.); (S.D.F.); (M.G.); (R.L.); (P.C.); (C.T.); (L.S.); (L.M.)
| | - Sara De Fanti
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (C.P.); (F.R.); (S.D.F.); (M.G.); (R.L.); (P.C.); (C.T.); (L.S.); (L.M.)
| | - Chiara Pirazzini
- Department of Medical and Surgical Sciences—DIMEC, University of Bologna, 40126 Bologna, Italy; (C.P.); (P.G.); (P.L.Z.); (M.B.)
| | - Chiara D’Silva
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy;
| | - Paolo Garagnani
- Department of Medical and Surgical Sciences—DIMEC, University of Bologna, 40126 Bologna, Italy; (C.P.); (P.G.); (P.L.Z.); (M.B.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging, Institute of Biology and Biomedicine and Institute of Information Technology, Mathematics and Mechanics, Department of Applied Mathematics, Lobachevsky State University, 603950 Nizhny Novgorod, Russia;
| | - Francesca Bonifazi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Pier Luigi Zinzani
- Department of Medical and Surgical Sciences—DIMEC, University of Bologna, 40126 Bologna, Italy; (C.P.); (P.G.); (P.L.Z.); (M.B.)
- Istituto di Ematologia “Seràgnoli”, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Massimiliano Bonafè
- Department of Medical and Surgical Sciences—DIMEC, University of Bologna, 40126 Bologna, Italy; (C.P.); (P.G.); (P.L.Z.); (M.B.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Maria Guarino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (C.P.); (F.R.); (S.D.F.); (M.G.); (R.L.); (P.C.); (C.T.); (L.S.); (L.M.)
| | - Raffaele Lodi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (C.P.); (F.R.); (S.D.F.); (M.G.); (R.L.); (P.C.); (C.T.); (L.S.); (L.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
| | - Pietro Cortelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (C.P.); (F.R.); (S.D.F.); (M.G.); (R.L.); (P.C.); (C.T.); (L.S.); (L.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
| | - Caterina Tonon
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (C.P.); (F.R.); (S.D.F.); (M.G.); (R.L.); (P.C.); (C.T.); (L.S.); (L.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
| | - Micaela Mitolo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Luisa Sambati
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (C.P.); (F.R.); (S.D.F.); (M.G.); (R.L.); (P.C.); (C.T.); (L.S.); (L.M.)
| | - Luca Morandi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (C.P.); (F.R.); (S.D.F.); (M.G.); (R.L.); (P.C.); (C.T.); (L.S.); (L.M.)
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40138 Bologna, Italy
| | - Maria Giulia Bacalini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy; (C.P.); (F.R.); (S.D.F.); (M.G.); (R.L.); (P.C.); (C.T.); (L.S.); (L.M.)
| |
Collapse
|
2
|
Alonso-Puyo J, Izagirre-Fernandez O, Crende O, Valdivia A, García-Gallastegui P, Sanz B. Experimental models as a tool for research on sarcopenia: A narrative review. Ageing Res Rev 2024; 101:102534. [PMID: 39369798 DOI: 10.1016/j.arr.2024.102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Sarcopenia is a musculoskeletal disorder related to muscle mass and function; as the worldwide population ages, its growing prevalence means a decline in quality of life and an increased burden for public health systems. As sarcopenia is a reversible condition, its early diagnosis is of utmost importance. Consensus definitions and diagnosis protocols for sarcopenia have been evolving for a long time, and the identification of molecular pathways subjacent to sarcopenia is a growing research area. The use of liquid biopsies to identify circulating molecules does not provide information about specific regulatory pathways or biomarkers in relevant tissue, and the use of skeletal muscle biopsies from older people has many limitations. Complementary tools are therefore necessary to advance the knowledge of relevant molecular aspects. The development of experimental models, such as animal, cellular, or bioengineered tissue, together with knock-in or knock-out strategies, could therefore be of great interest. This narrative review will explore experimental models of healthy muscle and aged muscle cells as a tool for research on sarcopenia. We will summarize the literature and present relevant experimental models in terms of their advantages and disadvantages. All of the presented approaches could potentially contribute to the accurate and early diagnosis, follow-up, and possible treatment of sarcopenia.
Collapse
Affiliation(s)
- Janire Alonso-Puyo
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., Leioa 48940, Spain
| | - Oihane Izagirre-Fernandez
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., Leioa 48940, Spain
| | - Olatz Crende
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., Leioa 48940, Spain
| | - Asier Valdivia
- Cell Biology and Histology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., Leioa 48940, Spain
| | - Patricia García-Gallastegui
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., Leioa 48940, Spain.
| | - Begoña Sanz
- Physiology Department, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Barrio Sarriena, sn., Leioa 48940, Spain; Biocruces Bizkaia Health Research Institute, Barakaldo, Bizkaia 48903, Spain.
| |
Collapse
|
3
|
Palacín-Aliana I, García-Romero N, Carrión-Navarro J, Puig-Serra P, Torres-Ruiz R, Rodríguez-Perales S, Viñal D, González-Rumayor V, Ayuso-Sacido Á. ddPCR Overcomes the CRISPR-Cas13a-Based Technique for the Detection of the BRAF p.V600E Mutation in Liquid Biopsies. Int J Mol Sci 2024; 25:10902. [PMID: 39456686 PMCID: PMC11507125 DOI: 10.3390/ijms252010902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The isolation of circulating tumoral DNA (ctDNA) present in the bloodstream brings about the opportunity to detect genomic aberrations from the tumor of origin. However, the low amounts of ctDNA present in liquid biopsy samples makes the development of highly sensitive techniques necessary to detect targetable mutations for the diagnosis, prognosis, and monitoring of cancer patients. Here, we employ standard genomic DNA (gDNA) and eight liquid biopsy samples from different cancer patients to examine the newly described CRISPR-Cas13a-based technology in the detection of the BRAF p.V600E actionable point mutation and appraise its diagnostic capacity with two PCR-based techniques: quantitative Real-Time PCR (qPCR) and droplet digital PCR (ddPCR). Regardless of its lower specificity compared to the qPCR and ddPCR techniques, the CRISPR-Cas13a-guided complex was able to detect inputs as low as 10 pM. Even though the PCR-based techniques have similar target limits of detection (LoDs), only the ddPCR achieved a 0.1% variant allele frequency (VAF) detection with elevated reproducibility, thus standing out as the most powerful and suitable tool for clinical diagnosis purposes. Our results also demonstrate how the CRISPR-Cas13a can detect low amounts of the target of interest, but its base-pair specificity failed in the detection of actionable point mutations at a low VAF; therefore, the ddPCR is still the most powerful and suitable technique for these purposes.
Collapse
Affiliation(s)
- Irina Palacín-Aliana
- Atrys Health, 08025 Barcelona, Spain; (I.P.-A.); (V.G.-R.)
- Fundación de Investigación HM Hospitales, HM Hospitales, 28015 Madrid, Spain
- Faculty of Science, Universidad de Alcalá, 28801 Madrid, Spain
| | - Noemí García-Romero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (J.C.-N.)
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | - Josefa Carrión-Navarro
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (J.C.-N.)
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
| | - Pilar Puig-Serra
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (R.T.-R.); (S.R.-P.)
| | - Raul Torres-Ruiz
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (R.T.-R.); (S.R.-P.)
- Centro de Investigación Energéticas Medioambientales y Tecnológicas (CIEMAT), Advanced Therapies Unit, Hematopoietic Innovative Therapies Division, Instituto de Investigación Sanitaria Fundación Jimenez Diaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Sandra Rodríguez-Perales
- Human Cancer Genetics Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Molecular Cytogenetics & Genome Editing Unit, Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (P.P.-S.); (R.T.-R.); (S.R.-P.)
| | - David Viñal
- Department of Medical Oncology, Hospital Universitario La Paz, 28046 Madrid, Spain;
| | | | - Ángel Ayuso-Sacido
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain; (N.G.-R.); (J.C.-N.)
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, 28223 Madrid, Spain
| |
Collapse
|
4
|
Bürtin F, Elias L, Hinz S, Forster M, Hildebrandt G, Frerker B, Bock F. ctDNA responds to neoadjuvant treatment in locally advanced rectal cancer. J Cancer Res Clin Oncol 2024; 150:428. [PMID: 39307893 PMCID: PMC11417078 DOI: 10.1007/s00432-024-05944-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Liquid biopsy is a minimally invasive procedure investigating tumor mutations. METHODS In our retrospective study, we investigated whether molecular therapy monitoring of patients receiving neoadjuvant radio(chemo)therapy on a daily routine is possible in 17 patients with locally advanced rectal cancer. Six patients received short-course radiotherapy (5 × 5 Gy) with subsequent surgery, six patients were treated according RAPIDO protocol with short-course radiotherapy followed by chemotherapy (FOLFOX4) and subsequent surgery and five patients received conventional neoadjuvant radiochemotherapy with 5-FU followed by surgery. Response was assessed by Dworak. Liquid biopsies were taken before and immediately after neoadjuvant radiotherapy to isolate and ultradeeply sequence cell free DNA with a panel of 127 genes. Somatic mutations were determined bioinformatically by comparison with normal DNA from leukocytes to distinguish them from germline variants or aging mutations. RESULTS In 12 patients (71%) at least one somatic mutation was detected. In 8/12 patients a decrease and in 4/12 an increase or mixed response in ctDNA was seen. Statistical correlation between ctDNA analysis and clinical response could not be seen. CONCLUSION ctDNA is responding to neoadjuvant therapy and liquid biopsy is easily integrated into a daily routine. As part of translational research this protocol leaves room for further investigations.
Collapse
Affiliation(s)
- Florian Bürtin
- Department of General Surgery, Rostock University Medical Center, Rostock, Germany
| | - Liema Elias
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig- Holstein, Kiel, Germany
| | - Sebastian Hinz
- Department of General Surgery, Rostock University Medical Center, Rostock, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig- Holstein, Kiel, Germany
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, Rostock University Medical Center, Südring 75, 18059, Rostock, Germany
| | - Bernd Frerker
- Department of Radiotherapy and Radiation Oncology, Rostock University Medical Center, Südring 75, 18059, Rostock, Germany
| | - Felix Bock
- Department of Radiotherapy and Radiation Oncology, Rostock University Medical Center, Südring 75, 18059, Rostock, Germany.
| |
Collapse
|
5
|
Rocchetti F, Tenore G, Macali F, Vicidomini T, Podda GM, Fantozzi PJ, Silvestri V, Porzio V, Valentini V, Ottini L, Richetta AG, Valentini V, Della Monaca M, Grenga C, Polimeni A, Romeo U. Expression Analysis of Circulating microRNAs in Saliva and Plasma for the Identification of Clinically Relevant Biomarkers for Oral Squamous Cell Carcinoma and Oral Potentially Malignant Disorders. Cancers (Basel) 2024; 16:2990. [PMID: 39272848 PMCID: PMC11394426 DOI: 10.3390/cancers16172990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/10/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
This study aims to evaluate the expression of salivary and plasmatic miRNAs as diagnostic biomarkers in patients with oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMDs). A total of 25 patients were divided into three groups, according to their diagnosis: OSCC patients (n = 14); OPMDs patients (n = 6); and healthy controls (n = 5). At the time at diagnosis/enrolment, patients underwent salivary and plasmatic collection. The expression of miRNA -21, -31, -138, -145, -184, and -424 were evaluated by real-time PCR. An F-test and ANOVA test were performed to evaluate the miRNA levels (significance at p < 0.05). By comparing miRNA expression levels from saliva, a statistically significant difference emerged in the expression of miR-138 and miR-424 between the three groups (p < 0.05). In particular, these two miRNAs showed decreased expression levels in saliva samples from OSCC and OPMD patients compared to those from healthy controls. On the other hand, miRNA expression levels in plasma were low in all the groups, and no statistically significant differences were found. Overall, our results showed that liquid biopsy from saliva may be a useful tool for the identification of diagnostic molecular biomarkers in OSCC and OPMDs.
Collapse
Affiliation(s)
- Federica Rocchetti
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Gianluca Tenore
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Macali
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Teresa Vicidomini
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Gian Marco Podda
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Paolo Junior Fantozzi
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Valentina Silvestri
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Virginia Porzio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonio Giovanni Richetta
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 00161 Rome, Italy
| | - Valentino Valentini
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Marco Della Monaca
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Camilla Grenga
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonella Polimeni
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Umberto Romeo
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
6
|
Markandran K, Clemente KNM, Tan E, Attal K, Chee QZ, Cheung C, Chen CK. The Future of Kawasaki Disease Diagnosis: Liquid Biopsy May Hold the Key. Int J Mol Sci 2024; 25:8062. [PMID: 39125631 PMCID: PMC11311979 DOI: 10.3390/ijms25158062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Kawasaki disease (KD) is a febrile illness characterised by systemic inflammation of small- and medium-sized blood vessels, which commonly occurs in young children. Although self-limiting, there is a risk of developing coronary artery lesions as the disease progresses, with delay in diagnosis and treatment. Unfortunately, the diagnosis of KD continues to remain a clinical dilemma. Thus, this article not only summarises the key research gaps associated with KD, but also evaluates the possibility of using circulating endothelial injury biomarkers, such as circulating endothelial cells, endothelial microparticles and vascular endothelial cell-free DNA, as diagnostic and prognostic tools for KD: a "liquid biopsy" approach. The challenges of translating liquid biopsies to use in KD and the opportunities for improvement in its diagnosis and management that such translation may provide are discussed. The use of endothelial damage markers, which are easily obtained via blood collection, as diagnostic tools is promising, and we hope this will be translated to clinical applications in the near future.
Collapse
Affiliation(s)
- Kasturi Markandran
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.M.)
| | - Kristine Nicole Mendoza Clemente
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.M.)
| | - Elena Tan
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Karan Attal
- School of Medicine, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Qiao Zhi Chee
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat–National University Children’s Medical Institute, National University Health System, Singapore 119228, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Experimental Medicine Building, 59 Nanyang Drive, Nanyang Technological University, Singapore 636921, Singapore
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Ching Kit Chen
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore; (K.M.)
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat–National University Children’s Medical Institute, National University Health System, Singapore 119228, Singapore
| |
Collapse
|
7
|
Hussein S, Qurbani K, Hamzah H, Ali S, Ahmed SK. Biotechnology breakthroughs: Revolutionizing oral cancer treatment. ORAL ONCOLOGY REPORTS 2024; 10:100404. [DOI: 10.1016/j.oor.2024.100404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
8
|
Laguna JC, Pastor B, Nalda I, Hijazo-Pechero S, Teixido C, Potrony M, Puig-Butillé JA, Mezquita L. Incidental pathogenic germline alterations detected through liquid biopsy in patients with solid tumors: prevalence, clinical utility and implications. Br J Cancer 2024; 130:1420-1431. [PMID: 38532104 PMCID: PMC11059286 DOI: 10.1038/s41416-024-02607-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/14/2024] [Accepted: 01/25/2024] [Indexed: 03/28/2024] Open
Abstract
Liquid biopsy, a minimally invasive approach for detecting tumor biomarkers in blood, has emerged as a leading-edge technique in cancer precision medicine. New evidence has shown that liquid biopsies can incidentally detect pathogenic germline variants (PGVs) associated with cancer predisposition, including in patients with a cancer for which genetic testing is not recommended. The ability to detect these incidental PGV in cancer patients through liquid biopsy raises important questions regarding the management of this information and its clinical implications. This incidental identification of PGVs raises concerns about cancer predisposition and the potential impact on patient management, not only in terms of providing access to treatment based on the tumor molecular profiling, but also the management of revealing genetic predisposition in patients and families. Understanding how to interpret this information is essential to ensure proper decision-making and to optimize cancer treatment and prevention strategies. In this review we provide a comprehensive summary of current evidence of incidental PGVs in cancer predisposition genes identified by liquid biopsy in patients with cancer. We critically review the methodological considerations of liquid biopsy as a tool for germline diagnosis, clinical utility and potential implications for cancer prevention, treatment, and research.
Collapse
Affiliation(s)
- Juan Carlos Laguna
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
| | - Belén Pastor
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Irene Nalda
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain
- Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
| | - Sara Hijazo-Pechero
- Preclinical and Experimental Research in Thoracic Tumors (PRETT), Oncobell, Bellvitge Biomedical Research Institute (IDIBELL), l'Hospitalet de Llobregat, Barcelona, Spain
| | - Cristina Teixido
- Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain
- Department of Medicine, University of Barcelona, Barcelona, Spain
- Department of Pathology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Miriam Potrony
- Biochemistry and Molecular Genetics Department, Hospital Clínic of Barcelona, IDIBAPS, Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Barcelona, Spain
| | - Joan Antón Puig-Butillé
- CIBER of Rare Diseases (CIBERER), Barcelona, Spain
- Molecular Biology CORE, Hospital Clínic of Barcelona, IDIBAPS, Barcelona, Spain
| | - Laura Mezquita
- Medical Oncology Department, Hospital Clinic of Barcelona, Barcelona, Spain.
- Laboratory of Translational Genomics and Targeted Therapies in Solid Tumors, IDIBAPS, Barcelona, Spain.
- Department of Medicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
9
|
Popescu I, Dudău AM, Dima S, Herlea V, Croitoru VM, Dinu IM, Miron M, Lupescu I, Croitoru-Cazacu IM, Dumitru R, Croitoru AE. Multimodal Treatment of Metastatic Rectal Cancer in a Young Patient: Case Report and Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:696. [PMID: 38792879 PMCID: PMC11123219 DOI: 10.3390/medicina60050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/14/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
Metastatic colorectal cancer requires a multidisciplinary and individualized approach. Herein, we reported the case of a young woman diagnosed with metastatic rectal cancer who received an individualized multimodal treatment strategy that resulted in a remarkable survival. There were several particular aspects of this case, such as the early onset of the disease, the successful use of conversion therapy, the application of liquid biopsy to guide treatment, and the specific nature of the bone metastasis. To offer more insights for navigating such challenges in patients with metastatic colorectal cancer, we have conducted a literature review to find more data related to the particularities of this case. The incidence of early onset colorectal cancer is on the rise. Data suggests that it differs from older-onset colorectal cancer in terms of its pathological, epidemiological, anatomical, metabolic, and biological characteristics. Conversion therapy and surgical intervention provide an opportunity for cure and improve outcomes in metastatic colorectal cancer. It is important to approach each case individually, as every patient with limited liver disease should be considered as a candidate for secondary resection. Moreover, liquid biopsy has an important role in the individualized management of metastatic colorectal cancer patients, as it offers additional information for treatment decisions.
Collapse
Affiliation(s)
- Ionuț Popescu
- Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania; (I.P.); (V.M.C.)
| | - Ana-Maria Dudău
- Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania; (I.P.); (V.M.C.)
- Medical Oncology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (I.M.D.); (M.M.); (I.M.C.-C.); (A.E.C.)
| | - Simona Dima
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.D.); (V.H.); (I.L.); (R.D.)
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Vlad Herlea
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.D.); (V.H.); (I.L.); (R.D.)
- Pathology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Vlad M. Croitoru
- Faculty of Medicine, Titu Maiorescu University, 040441 Bucharest, Romania; (I.P.); (V.M.C.)
- Medical Oncology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (I.M.D.); (M.M.); (I.M.C.-C.); (A.E.C.)
| | - Ioana Mihaela Dinu
- Medical Oncology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (I.M.D.); (M.M.); (I.M.C.-C.); (A.E.C.)
| | - Monica Miron
- Medical Oncology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (I.M.D.); (M.M.); (I.M.C.-C.); (A.E.C.)
| | - Ioana Lupescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.D.); (V.H.); (I.L.); (R.D.)
- Radiology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Irina M. Croitoru-Cazacu
- Medical Oncology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (I.M.D.); (M.M.); (I.M.C.-C.); (A.E.C.)
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.D.); (V.H.); (I.L.); (R.D.)
| | - Radu Dumitru
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.D.); (V.H.); (I.L.); (R.D.)
- Radiology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Adina Emilia Croitoru
- Medical Oncology Department, Fundeni Clinical Institute, 022328 Bucharest, Romania; (I.M.D.); (M.M.); (I.M.C.-C.); (A.E.C.)
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 020021 Bucharest, Romania; (S.D.); (V.H.); (I.L.); (R.D.)
| |
Collapse
|
10
|
Mali SB. Screening of head neck cancer. ORAL ONCOLOGY REPORTS 2024; 9:100142. [DOI: 10.1016/j.oor.2023.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Fernández-Lázaro D, Sanz B, Seco-Calvo J. The Mechanisms of Regulated Cell Death: Structural and Functional Proteomic Pathways Induced or Inhibited by a Specific Protein-A Narrative Review. Proteomes 2024; 12:3. [PMID: 38250814 PMCID: PMC10801515 DOI: 10.3390/proteomes12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Billions of cells die in us every hour, and our tissues do not shrink because there is a natural regulation where Cell Death (CD) is balanced with cell division. The process in which cells eliminate themselves in a controlled manner is called Programmed Cell Death (PCD). The PCD plays an important role during embryonic development, in maintaining homeostasis of the body's tissues, and in the elimination of damaged cells, under a wide range of physiological and developmental stimuli. A multitude of protein mediators of PCD have been identified and signals have been found to utilize common pathways elucidating the proteins involved. This narrative review focuses on caspase-dependent and caspase-independent PCD pathways. Included are studies of caspase-dependent PCD such as Anoikis, Catastrophe Mitotic, Pyroptosis, Emperitosis, Parthanatos and Cornification, and Caspase-Independent PCD as Wallerian Degeneration, Ferroptosis, Paraptosis, Entosis, Methuosis, and Extracellular Trap Abnormal Condition (ETosis), as well as neutrophil extracellular trap abnormal condition (NETosis) and Eosinophil Extracellular Trap Abnormal Condition (EETosis). Understanding PCD from those reported in this review could shed substantial light on the processes of biological homeostasis. In addition, identifying specific proteins involved in these processes is mandatory to identify molecular biomarkers, as well as therapeutic targets. This knowledge could provide the ability to modulate the PCD response and could lead to new therapeutic interventions in a wide range of diseases.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- SARCELLOMICS Research Group, 27071 León, Spain; (B.S.); (J.S.-C.)
| | - Begoña Sanz
- SARCELLOMICS Research Group, 27071 León, Spain; (B.S.); (J.S.-C.)
- Department of Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Jesús Seco-Calvo
- SARCELLOMICS Research Group, 27071 León, Spain; (B.S.); (J.S.-C.)
- Department of Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Institute of Biomedicine (IBIOMED), Universidad de León, 27071 León, Spain
| |
Collapse
|
12
|
Lakpour N, Sadeghi MR, Jafarzadeh N, Henkel R, Hajiparvaneh A, Fathi Z, Ghods R, Gilany K, Madjd Z. Metabolic Fingerprinting of Serum and Seminal Plasma of Testicular Cancer Patients Using Raman Spectroscopy: A Pilot Study. J Reprod Infertil 2024; 25:3-11. [PMID: 39157284 PMCID: PMC11330202 DOI: 10.18502/jri.v25i1.15193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/13/2024] [Indexed: 08/20/2024] Open
Abstract
Background Testicular cancer (TC) is a relatively rare type of cancer in men. Early diagnosis of TC remains challenging. Metabolomics holds promise in offering valuable insights in this regard. In this study, a metabolic fingerprinting approach was employed to identify potential biomarkers in both serum and seminal plasma of TC patients. Methods A total of 9 patients with testicular cancer and 10 controls were included in the study. The metabolic fingerprinting approach was utilized as a rapid diagnostic tool to analyze the metabolome in serum and seminal plasma of TC patients in comparison to fertile men. Raman spectroscopy was applied for the analysis of metabolites in these biological samples. Results Principal component analysis (PCA) and functional group analysis showed that the differentiation between serum samples from healthy men and TC patients was not possible. However, when analyzing seminal plasma, a significant difference was found between the two groups (p<0.05). Functional group analysis of serum only showed an increase in tryptophan concentration ratio in TC patients as compared to healthy men (p=0.03). In contrast, in seminal plasma of TC patients, this increase was observed in all analyzed compounds, including phenylalanine, tyrosine, lipids, proteins, phenols (p<0.001). Conclusion Our study highlights the potential of metabolic fingerprinting as a fast diagnostic tool for screening TC patients, with seminal plasma serving as a valuable biological sample. Furthermore, several potential biomarkers, particularly phenylalanine, were identified in seminal plasma. This research contributes to our understanding of TC pathogenesis and has the potential to pave the way for early detection and personalized treatment approaches.
Collapse
Affiliation(s)
- Niknam Lakpour
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Reza Sadeghi
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Naser Jafarzadeh
- Department of Medical Physics, Tarbiat Modares University, Tehran, Iran
| | - Ralf Henkel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
- LogixX Pharma, Theale, Berkshire, UK
| | | | - Zohreh Fathi
- Avicenna Fertility Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Khorrami Jahromi A, Siavash Moakhar R, Yedire SG, Shieh H, Rosenflanz K, Birks A, de Vries J, Lu Y, Shafique H, Strauss J, Mahshid S. Additively manufactured multiplexed electrochemical device (AMMED) for portable sample-to-answer detection. LAB ON A CHIP 2023; 23:5107-5119. [PMID: 37921001 DOI: 10.1039/d3lc00314k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Portable sample-to-answer devices with applications in point-of-care settings have emerged to obviate the necessity of centralized laboratories for biomarker analysis. In this work, a smartphone-operated and additively manufactured multiplexed electrochemical device (AMMED) is presented for the portable detection of biomarkers in blood and saliva. AMMED is comprised of a customized portable potentiostat with a multiplexing feature, a 3D-printed sample collection cartridge to handle three samples of saliva and blood at the same time, a smartphone application to remotely control the potentiostat, and a 3D-printed-based multiplexed microfluidic electrochemical biosensor (test chip). Here, by employing additive manufacturing techniques, a simple, cleanroom-free, and scalable approach was proposed for the fabrication of the test chip. Moreover, these techniques can bring about easy integration of AMMED components. Additionally, the test chip can be compatible with different affinity-based bioassays which can be implemented in a multiplexed manner for detection. The AMMED components were successfully characterized in terms of electrochemical and fluidic performance. Particularly, to demonstrate the biosensing capabilities of the device, the spike protein of the SARS-CoV-2 omicron variant and a well-established aptameric assay were selected as the representative biomarker and the bioassay, respectively. The proposed device accurately and selectively detected the target of interest in a rapid (5 min) and multiplex manner with a dynamic detection range of 1-10 000 pg ml-1 in different media, and the clinical feasibility was assessed by several saliva patient samples. AMMED offers a versatile sample-to-answer platform that can be used for the detection of various biomarkers present in biofluids.
Collapse
Affiliation(s)
| | | | | | - Hamed Shieh
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada.
| | - Katerina Rosenflanz
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada.
| | - Amber Birks
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada.
| | - Justin de Vries
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada.
| | - Yao Lu
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada.
| | - Houda Shafique
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada.
| | - Julia Strauss
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada.
| | - Sara Mahshid
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0E9, Canada.
- Department of Experimental Medicine, McGill University, Montréal, Quebec, H3G 2M1, Canada
| |
Collapse
|
14
|
Hussein MA, Munirathinam G. Gene Expression and DNA Methylation as Prognostic Markers in Metastatic Castration-Resistant Prostate Cancer: Analysis of Circulating Tumor Cells and Paired Plasma-Derived Exosomes. Cancers (Basel) 2023; 15:5325. [PMID: 38001585 PMCID: PMC10669806 DOI: 10.3390/cancers15225325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Prostate cancer (PCa) is the most prevalent cancer among men and is the second leading cause of cancer-related death in the United States [...].
Collapse
Affiliation(s)
- Mohamed Ali Hussein
- Department of Pharmaceutical Services, Children’s Cancer Hospital Egypt 57357, Cairo 11562, Egypt;
- Department of Biology, School of Sciences and Engineering, American University in Cairo, New Cairo 11835, Egypt
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, College of Medicine, University of Illinois, Rockford, IL 61107, USA
| |
Collapse
|
15
|
Liu YK, Wu X, Hadisurya M, Li L, Kaimakliotis H, Iliuk A, Tao WA. One-Pot Analytical Pipeline for Efficient and Sensitive Proteomic Analysis of Extracellular Vesicles. J Proteome Res 2023; 22:3301-3310. [PMID: 37702715 PMCID: PMC10897859 DOI: 10.1021/acs.jproteome.3c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Extracellular vesicle (EV) proteomics emerges as an effective tool for discovering potential biomarkers for disease diagnosis, monitoring, and therapeutics. However, the current workflow of mass spectrometry-based EV proteome analysis is not fully compatible in a clinical setting due to inefficient EV isolation methods and a tedious sample preparation process. To streamline and improve the efficiency of EV proteome analysis, here we introduce a one-pot analytical pipeline integrating a robust EV isolation approach, EV total recovery and purification (EVtrap), with in situ protein sample preparation, to detect urinary EV proteome. By incorporating solvent-driven protein capture and fast on-bead digestion, the one-pot pipeline enabled the whole EV proteome analysis to be completed within one day. In comparison with the existing workflow, the one-pot pipeline was able to obtain better peptide yield and identify the equivalent number of unique EV proteins from 1 mL of urine. Finally, we applied the one-pot pipeline to profile proteomes in urinary EVs of bladder cancer patients. A total of 2774 unique proteins were identified in 53 urine samples using a 15 min gradient library-free data-independent acquisition method. Taken altogether, our novel one-pot analytical pipeline demonstrated its potential for routine and robust EV proteomics in biomedical applications.
Collapse
Affiliation(s)
- Yi-Kai Liu
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaofeng Wu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Marco Hadisurya
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Li Li
- Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
| | - Hristos Kaimakliotis
- Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Anton Iliuk
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
| | - W Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Tymora Analytical Operations, West Lafayette, Indiana 47906, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Gorji L, Brown ZJ, Pawlik TM. Mutational Landscape and Precision Medicine in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4221. [PMID: 37686496 PMCID: PMC10487145 DOI: 10.3390/cancers15174221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth most common malignancy worldwide and exhibits a universal burden as the incidence of the disease continues to rise. In addition to curative-intent therapies such as liver resection and transplantation, locoregional and systemic therapy options also exist. However, existing treatments carry a dismal prognosis, often plagued with high recurrence and mortality. For this reason, understanding the tumor microenvironment and mutational pathophysiology has become the center of investigation for disease control. The use of precision medicine and genetic analysis can supplement current treatment modalities to promote individualized management of HCC. In the search for personalized medicine, tools such as next-generation sequencing have been used to identify unique tumor mutations and improve targeted therapies. Furthermore, investigations are underway for specific HCC biomarkers to augment the diagnosis of malignancy, the prediction of whether the tumor environment is amenable to available therapies, the surveillance of treatment response, the monitoring for disease recurrence, and even the identification of novel therapeutic opportunities. Understanding the mutational landscape and biomarkers of the disease is imperative for tailored management of the malignancy. In this review, we summarize the molecular targets of HCC and discuss the current role of precision medicine in the treatment of HCC.
Collapse
Affiliation(s)
- Leva Gorji
- Department of Surgery, Kettering Health Dayton, Dayton, OH 45405, USA;
| | - Zachary J. Brown
- Department of Surgery, Division of Surgical Oncology, New York University—Long Island, Mineola, NY 11501, USA;
| | - Timothy M. Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Cancer Hospital, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Bertoli E, De Carlo E, Basile D, Zara D, Stanzione B, Schiappacassi M, Del Conte A, Spina M, Bearz A. Liquid Biopsy in NSCLC: An Investigation with Multiple Clinical Implications. Int J Mol Sci 2023; 24:10803. [PMID: 37445976 DOI: 10.3390/ijms241310803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Tissue biopsy is essential for NSCLC diagnosis and treatment management. Over the past decades, liquid biopsy has proven to be a powerful tool in clinical oncology, isolating tumor-derived entities from the blood. Liquid biopsy permits several advantages over tissue biopsy: it is non-invasive, and it should provide a better view of tumor heterogeneity, gene alterations, and clonal evolution. Consequentially, liquid biopsy has gained attention as a cancer biomarker tool, with growing clinical applications in NSCLC. In the era of precision medicine based on molecular typing, non-invasive genotyping methods became increasingly important due to the great number of oncogene drivers and the small tissue specimen often available. In our work, we comprehensively reviewed established and emerging applications of liquid biopsy in NSCLC. We made an excursus on laboratory analysis methods and the applications of liquid biopsy either in early or metastatic NSCLC disease settings. We deeply reviewed current data and future perspectives regarding screening, minimal residual disease, micrometastasis detection, and their implication in adjuvant and neoadjuvant therapy management. Moreover, we reviewed liquid biopsy diagnostic utility in the absence of tissue biopsy and its role in monitoring treatment response and emerging resistance in metastatic NSCLC treated with target therapy and immuno-therapy.
Collapse
Affiliation(s)
- Elisa Bertoli
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Elisa De Carlo
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Debora Basile
- Department of Medical Oncology, San Giovanni Di Dio Hospital, 88900 Crotone, Italy
| | - Diego Zara
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
- Department of Medicine (DAME), University of Udine, 33100 Udine, Italy
| | - Brigida Stanzione
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Monica Schiappacassi
- Molecular Oncology Unit, (OMMPPT) Department of Translational Research, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Alessandro Del Conte
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Michele Spina
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Alessandra Bearz
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| |
Collapse
|
18
|
Grizzi G, Salati M, Bonomi M, Ratti M, Holladay L, De Grandis MC, Spada D, Baiocchi GL, Ghidini M. Circulating Tumor DNA in Gastric Adenocarcinoma: Future Clinical Applications and Perspectives. Int J Mol Sci 2023; 24:ijms24119421. [PMID: 37298371 DOI: 10.3390/ijms24119421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Gastric cancer (GC) is still one of the most aggressive cancers with a few targetable alterations and a dismal prognosis. A liquid biopsy allows for identifying and analyzing the DNA released from tumor cells into the bloodstream. Compared to tissue-based biopsy, liquid biopsy is less invasive, requires fewer samples, and can be repeated over time in order to longitudinally monitor tumor burden and molecular changes. Circulating tumor DNA (ctDNA) has been recognized to have a prognostic role in all the disease stages of GC. The aim of this article is to review the current and future applications of ctDNA in gastric adenocarcinoma, in particular, with respect to early diagnosis, the detection of minimal residual disease (MRD) following curative surgery, and in the advanced disease setting for treatment decision choice and therapeutic monitoring. Although liquid biopsies have shown potentiality, pre-analytical and analytical steps must be standardized and validated to ensure the reproducibility and standardization of the procedures and data analysis methods. Further research is needed to allow the use of liquid biopsy in everyday clinical practice.
Collapse
Affiliation(s)
| | - Massimiliano Salati
- Department of Oncology and Hematology, University Hospital of Modena, 41124 Modena, Italy
| | - Maria Bonomi
- Oncology Unit, ASST Cremona, 26100 Cremona, Italy
| | | | - Lauren Holladay
- Anne Burnett Marion School of Medicine, Texas Christian University, Fort Worth, TX 76129, USA
| | | | | | | | - Michele Ghidini
- Oncology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
19
|
Xiong J, Fu F, Yu F, He X. Advances of exosomal miRNAs in the diagnosis and treatment of ovarian cancer. Discov Oncol 2023; 14:65. [PMID: 37160813 PMCID: PMC10169985 DOI: 10.1007/s12672-023-00674-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Ovarian cancer is a tumor with the highest fatalities among female malignant tumors. This disease has no typical symptoms in its early stage, and most of the patients are in an advanced stage when being treated. The treatment effect is poor and it is easy to develop chemotherapy resistance. Therefore, it is particularly urgent to clarify the pathogenesis of ovarian cancer, explore its early diagnosis of biomarkers, and discover new treatment methods. As a carrier of intercellular information and genetic material transfer, exosomes are widely distributed in body fluids (e.g. blood and urine), which are regarded as latent tumor markers and take effects on tumor occurrence and invasion. Several articles have recently signified that exosomal miRNAs are widely implicated in the formation of the ovarian cancer tumor microenvironment, disease initiation and progression, and the generation of chemotherapy resistance. This article reviews the research on exosomal miRNAs in ovarian cancer.
Collapse
Affiliation(s)
- Jun Xiong
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Fen Fu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Feng Yu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China
| | - Xiaoju He
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, NanChang, JiangXi, China.
| |
Collapse
|
20
|
Gaitsch H, Franklin RJM, Reich DS. Cell-free DNA-based liquid biopsies in neurology. Brain 2023; 146:1758-1774. [PMID: 36408894 PMCID: PMC10151188 DOI: 10.1093/brain/awac438] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
This article reviews recent developments in the application of cell-free DNA-based liquid biopsies to neurological diseases. Over the past few decades, an explosion of interest in the use of accessible biofluids to identify and track molecular disease has revolutionized the fields of oncology, prenatal medicine and others. More recently, technological advances in signal detection have allowed for informative analysis of biofluids that are typically sparse in cells and other circulating components, such as CSF. In parallel, advancements in epigenetic profiling have allowed for novel applications of liquid biopsies to diseases without characteristic mutational profiles, including many degenerative, autoimmune, inflammatory, ischaemic and infectious disorders. These events have paved the way for a wide array of neurological conditions to benefit from enhanced diagnostic, prognostic, and treatment abilities through the use of liquid biomarkers: a 'liquid biopsy' approach. This review includes an overview of types of liquid biopsy targets with a focus on circulating cell-free DNA, methods used to identify and probe potential liquid biomarkers, and recent applications of such biomarkers to a variety of complex neurological conditions including CNS tumours, stroke, traumatic brain injury, Alzheimer's disease, epilepsy, multiple sclerosis and neuroinfectious disease. Finally, the challenges of translating liquid biopsies to use in clinical neurology settings-and the opportunities for improvement in disease management that such translation may provide-are discussed.
Collapse
Affiliation(s)
- Hallie Gaitsch
- NIH-Oxford-Cambridge Scholars Program, Wellcome-MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | | | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Brockley LJ, Souza VGP, Forder A, Pewarchuk ME, Erkan M, Telkar N, Benard K, Trejo J, Stewart MD, Stewart GL, Reis PP, Lam WL, Martinez VD. Sequence-Based Platforms for Discovering Biomarkers in Liquid Biopsy of Non-Small-Cell Lung Cancer. Cancers (Basel) 2023; 15:2275. [PMID: 37190212 PMCID: PMC10136462 DOI: 10.3390/cancers15082275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Lung cancer detection and monitoring are hampered by a lack of sensitive biomarkers, which results in diagnosis at late stages and difficulty in tracking response to treatment. Recent developments have established liquid biopsies as promising non-invasive methods for detecting biomarkers in lung cancer patients. With concurrent advances in high-throughput sequencing technologies and bioinformatics tools, new approaches for biomarker discovery have emerged. In this article, we survey established and emerging biomarker discovery methods using nucleic acid materials derived from bodily fluids in the context of lung cancer. We introduce nucleic acid biomarkers extracted from liquid biopsies and outline biological sources and methods of isolation. We discuss next-generation sequencing (NGS) platforms commonly used to identify novel biomarkers and describe how these have been applied to liquid biopsy. We highlight emerging biomarker discovery methods, including applications of long-read sequencing, fragmentomics, whole-genome amplification methods for single-cell analysis, and whole-genome methylation assays. Finally, we discuss advanced bioinformatics tools, describing methods for processing NGS data, as well as recently developed software tailored for liquid biopsy biomarker detection, which holds promise for early diagnosis of lung cancer.
Collapse
Affiliation(s)
- Liam J. Brockley
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Vanessa G. P. Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil;
| | - Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Michelle E. Pewarchuk
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Melis Erkan
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS B3K 6R8, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
- British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Katya Benard
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Jessica Trejo
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Matt D. Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Greg L. Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Patricia P. Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil;
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu 18618-687, SP, Brazil
| | - Wan L. Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada; (V.G.P.S.); (A.F.); (M.E.P.); (N.T.); (K.B.); (J.T.); (M.D.S.); (G.L.S.); (W.L.L.)
| | - Victor D. Martinez
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS B3K 6R8, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
22
|
Subhan MA, Parveen F, Shah H, Yalamarty SSK, Ataide JA, Torchilin VP. Recent Advances with Precision Medicine Treatment for Breast Cancer including Triple-Negative Sub-Type. Cancers (Basel) 2023; 15:2204. [PMID: 37190133 PMCID: PMC10137302 DOI: 10.3390/cancers15082204] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Breast cancer is a heterogeneous disease with different molecular subtypes. Breast cancer is the second leading cause of mortality in woman due to rapid metastasis and disease recurrence. Precision medicine remains an essential source to lower the off-target toxicities of chemotherapeutic agents and maximize the patient benefits. This is a crucial approach for a more effective treatment and prevention of disease. Precision-medicine methods are based on the selection of suitable biomarkers to envision the effectiveness of targeted therapy in a specific group of patients. Several druggable mutations have been identified in breast cancer patients. Current improvements in omics technologies have focused on more precise strategies for precision therapy. The development of next-generation sequencing technologies has raised hopes for precision-medicine treatment strategies in breast cancer (BC) and triple-negative breast cancer (TNBC). Targeted therapies utilizing immune checkpoint inhibitors (ICIs), epidermal growth factor receptor inhibitor (EGFRi), poly(ADP-ribose) polymerase inhibitor (PARPi), antibody-drug conjugates (ADCs), oncolytic viruses (OVs), glucose transporter-1 inhibitor (GLUT1i), and targeting signaling pathways are potential treatment approaches for BC and TNBC. This review emphasizes the recent progress made with the precision-medicine therapy of metastatic breast cancer and TNBC.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Farzana Parveen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Pharmacy Services, DHQ Hospital Jhang 35200, Primary and Secondary Healthcare Department, Government of Punjab, Lahore 54000, Pakistan
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | | | - Janaína Artem Ataide
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, SP, Brazil
| | - Valdimir P. Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
23
|
Bitenc M, Grebstad Tune B, Melheim M, Atneosen-Åsegg M, Lai X, Rajar P, Solberg R, Baumbusch LO. Assessing nuclear versus mitochondrial cell-free DNA (cfDNA) by qRT-PCR and droplet digital PCR using a piglet model of perinatal asphyxia. Mol Biol Rep 2023; 50:1533-1544. [PMID: 36512170 PMCID: PMC9889441 DOI: 10.1007/s11033-022-08135-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Since the discovery more than half a century ago, cell-free DNA (cfDNA) has become an attractive objective in multiple diagnostic, prognostic, and monitoring settings. However, despite the increasing number of cfDNA applications in liquid biopsies, we still lack a comprehensive understanding of the nature of cfDNA including optimal assessment. In the presented study, we continued testing and validation of common techniques for cfDNA extraction and quantification (qRT-PCR or droplet digital PCR) of nuclear- and mitochondrial cfDNA (ncfDNA and mtcfDNA) in blood, using a piglet model of perinatal asphyxia to determine potential temporal and quantitative changes at the levels of cfDNA. METHODS AND RESULTS Newborn piglets (n = 19) were either exposed to hypoxia (n = 11) or were part of the sham-operated control group (n = 8). Blood samples were collected at baseline (= start) and at the end of hypoxia or at 40-45 min for the sham-operated control group. Applying the qRT-PCR method, ncfDNA concentrations in piglets exposed to hypoxia revealed an increasing trend from 7.1 ng/ml to 9.5 ng/ml for HK2 (hexokinase 2) and from 4.6 ng/ml to 7.9 ng/ml for β-globulin, respectively, whereas the control animals showed a more balanced profile. Furthermore, median levels of mtcfDNA were much higher in comparison to ncfDNA, but without significant differences between intervention versus the control group. CONCLUSIONS Both, qRT-PCR and the droplet digital PCR technique identified overall similar patterns for the concentration changes of cfDNA; but, the more sensitive digital PCR methodology might be required to identify minimal responses.
Collapse
Affiliation(s)
- Marie Bitenc
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Postbox 4950, 0424, Nydalen, Oslo, Norway
| | - Benedicte Grebstad Tune
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Postbox 4950, 0424, Nydalen, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Maria Melheim
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Postbox 4950, 0424, Nydalen, Oslo, Norway
| | | | - Xiaoran Lai
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Polona Rajar
- Department of Neonatal Intensive Care, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Ullevål, Oslo, Norway
- Institute of Oral Biology, University of Oslo, Oslo, Norway
| | - Rønnaug Solberg
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Postbox 4950, 0424, Nydalen, Oslo, Norway
- Department of Pediatrics, Vestfold Hospital Trust, Tønsberg, Norway
| | - Lars Oliver Baumbusch
- Department of Pediatric Research, Division of Paediatric and Adolescent Medicine, Oslo University Hospital Rikshospitalet, Postbox 4950, 0424, Nydalen, Oslo, Norway.
| |
Collapse
|
24
|
Bodaghi A, Fattahi N, Ramazani A. Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of Covid-19 and other diseases. Heliyon 2023; 9:e13323. [PMID: 36744065 PMCID: PMC9884646 DOI: 10.1016/j.heliyon.2023.e13323] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The use of biomarkers as early warning systems in the evaluation of disease risk has increased markedly in the last decade. Biomarkers are indicators of typical biological processes, pathogenic processes, or pharmacological reactions to therapy. The application and identification of biomarkers in the medical and clinical fields have an enormous impact on society. In this review, we discuss the history, various definitions, classifications, characteristics, and discovery of biomarkers. Furthermore, the potential application of biomarkers in the diagnosis, prognosis, and treatment of various diseases over the last decade are reviewed. The present review aims to inspire readers to explore new avenues in biomarker research and development.
Collapse
Affiliation(s)
- Ali Bodaghi
- Department of Chemistry, Tuyserkan Branch, Islamic Azad University, Tuyserkan, Iran
| | - Nadia Fattahi
- Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran,Trita Nanomedicine Research and Technology Development Center (TNRTC), Zanjan Health Technology Park, 45156-13191, Zanjan, Iran
| | - Ali Ramazani
- Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran,Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan, 45371-38791, Iran,Corresponding author. Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran.;
| |
Collapse
|
25
|
Wang Y, Wang S, Li L, Zou Y, Liu B, Fang X. Microfluidics‐based molecular profiling of tumor‐derived exosomes for liquid biopsy. VIEW 2023. [DOI: 10.1002/viw.20220048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Yuqing Wang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Shurong Wang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Lanting Li
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Yan Zou
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Baohong Liu
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| | - Xiaoni Fang
- School of Pharmacy Shanghai Stomatological Hospital Department of Chemistry Fudan University Shanghai China
| |
Collapse
|
26
|
Mirza S, Bhadresha K, Mughal MJ, McCabe M, Shahbazi R, Ruff P, Penny C. Liquid biopsy approaches and immunotherapy in colorectal cancer for precision medicine: Are we there yet? Front Oncol 2023; 12:1023565. [PMID: 36686736 PMCID: PMC9853908 DOI: 10.3389/fonc.2022.1023565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of cancer-related deaths globally, with nearly half of patients detected in the advanced stages. This is due to the fact that symptoms associated with CRC often do not appear until the cancer has reached an advanced stage. This suggests that CRC is a cancer with a slow progression, making it curable and preventive if detected in its early stage. Therefore, there is an urgent clinical need to improve CRC early detection and personalize therapy for patients with this cancer. Recently, liquid biopsy as a non-invasive or nominally invasive approach has attracted considerable interest for its real-time disease monitoring capability through repeated sample analysis. Several studies in CRC have revealed the potential for liquid biopsy application in a real clinical setting using circulating RNA/miRNA, circulating tumor cells (CTCs), exosomes, etc. However, Liquid biopsy still remains a challenge since there are currently no promising results with high specificity and specificity that might be employed as optimal circulatory biomarkers. Therefore, in this review, we conferred the plausible role of less explored liquid biopsy components like mitochondrial DNA (mtDNA), organoid model of CTCs, and circulating cancer-associated fibroblasts (cCAFs); which may allow researchers to develop improved strategies to unravel unfulfilled clinical requirements in CRC patients. Moreover, we have also discussed immunotherapy approaches to improve the prognosis of MSI (Microsatellite Instability) CRC patients using neoantigens and immune cells in the tumor microenvironment (TME) as a liquid biopsy approach in detail.
Collapse
Affiliation(s)
- Sheefa Mirza
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kinjal Bhadresha
- Hematology/Oncology Division, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Muhammed Jameel Mughal
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Science, The George Washington University, Washington, DC, United States
| | - Michelle McCabe
- Department of Anatomical Pathology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | - Reza Shahbazi
- Hematology/Oncology Division, School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Paul Ruff
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Department of Internal Medicine, Common Epithelial Cancer Research Centre, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,*Correspondence: Clement Penny,
| |
Collapse
|
27
|
Zhang Q, Song X, Song X. Contents in tumor-educated platelets as the novel biosource for cancer diagnostics. Front Oncol 2023; 13:1165600. [PMID: 37139159 PMCID: PMC10151018 DOI: 10.3389/fonc.2023.1165600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Liquid biopsy, a powerful non-invasive test, has been widely used in cancer diagnosis and treatment. Platelets, the second most abundant cells in peripheral blood, are becoming one of the richest sources of liquid biopsy with the capacity to systematically and locally respond to the presence of cancer and absorb and store circulating proteins and different types of nucleic acids, thus called "tumor-educated platelets (TEPs)". The contents of TEPs are significantly and specifically altered, empowering them with the potential as cancer biomarkers. The current review focuses on the alternation of TEP content, including coding and non-coding RNA and proteins, and their role in cancer diagnostics.
Collapse
Affiliation(s)
- Qianru Zhang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xianrang Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xingguo Song
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- *Correspondence: Xingguo Song,
| |
Collapse
|
28
|
Ray SK, Mukherjee S. Starring Role of Biomarkers and Anticancer Agents as a Major Driver in Precision Medicine of Cancer Therapy. Curr Mol Med 2023; 23:111-126. [PMID: 34939542 DOI: 10.2174/1566524022666211221152947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/16/2022]
Abstract
Precision medicine is the most modern contemporary medicine approach today, based on great amount of data on people's health, individual characteristics, and life circumstances, and employs the most effective ways to prevent and cure diseases. Precision medicine in cancer is the most precise and viable treatment for every cancer patient based on the disease's genetic profile. Precision medicine changes the standard one size fits all medication model, which focuses on average responses to care. Consolidating modern methodologies for streamlining and checking anticancer drugs can have long-term effects on understanding the results. Precision medicine can help explicit anticancer treatments using various drugs and even in discovery, thus becoming the paradigm of future cancer medicine. Cancer biomarkers are significant in precision medicine, and findings of different biomarkers make this field more promising and challenging. Naturally, genetic instability and the collection of extra changes in malignant growth cells are ways cancer cells adapt and survive in a hostile environment, for example, one made by these treatment modalities. Precision medicine centers on recognizing the best treatment for individual patients, dependent on their malignant growth and genetic characterization. This new era of genomics progressively referred to as precision medicine, has ignited a new episode in the relationship between genomics and anticancer drug development.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya Pradesh-462020. India
| |
Collapse
|
29
|
Zhuang X, Qian J, Xia X, Wang Y, Wang H, Jing L, Zhang Y, Zhang Y. Serum circulating free DNA of syncytin-1 as a novel molecular marker for early diagnosis of non-small-cell lung cancer. Biomark Med 2022; 16:1259-1268. [PMID: 36861469 DOI: 10.2217/bmm-2022-0499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Background: Liquid biopsy has been receiving attention as an emerging detection technology in the clinical application of non-small-cell lung cancer (NSCLC). Methods: We quantified serum circulating free DNA (cfDNA) of syncytin-1 in 126 patients and 106 controls, analyzed the correlation of level with pathological parameters and explored diagnostic utility. Results: The cfDNA of syncytin-1 levels in NSCLC patients were higher than healthy controls (p < 0.0001). These levels were associated with smoking history (p = 0.0393). The area under the curve of cfDNA of syncytin-1 was 0.802, and combination of cfDNA of syncytin-1/cytokeratin 19 fragment antigen 21-1/carcinoembryonic antigen markers improved diagnostic efficiency. Conclusion: The cfDNA of syncytin-1 was detected in NSCLC patients and can be used as a novel molecular marker for early diagnosis.
Collapse
Affiliation(s)
- Xuewei Zhuang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, 250031, China
| | - Jingrong Qian
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, 250031, China
| | - Xiyan Xia
- Department of Microbial Immune, Jinan Vocational College of Nursing, Jinan, Shandong, 250102, China
| | - Yuanling Wang
- Department of Nursing, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, 250031, China
| | - Hongchun Wang
- Department of Clinical Laboratory, Shandong University Qilu Hospital, Jinan, Shandong, 250012, China
| | - Liping Jing
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, 250031, China
| | - Yanli Zhang
- Department of Clinical Laboratory, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, 250031, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, 250031, China
| |
Collapse
|
30
|
Chow YP, Zainul Abidin N, Kow KS, Tho LM, Wong CL. Analytical and clinical validation of a custom 15-gene next-generation sequencing panel for the evaluation of circulating tumor DNA mutations in patients with advanced non-small-cell lung cancer. PLoS One 2022; 17:e0276161. [PMID: 36256645 PMCID: PMC9578623 DOI: 10.1371/journal.pone.0276161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 09/30/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND This is a pilot proof-of-concept study to evaluate the utility of a custom 15-gene circulating tumor DNA (ctDNA) panel as a potential companion molecular next-generation sequencing (NGS) assay for identifying somatic single nucleotide variants and indels in non-small-cell lung cancer (NSCLC) patients. The custom panel covers the hotspot mutations in EGFR, KRAS, NRAS, BRAF, PIK3CA, ERBB2, MET, KIT, PDGFRA, ALK, ROS1, RET, NTRK1, NTRK2 and NTRK3 genes which serve as biomarkers for guiding treatment decisions in NSCLC patients. METHOD The custom 15-gene ctDNA NGS panel was designed using ArcherDX Assay Designer. A total of 20 ng or 50 ng input ctDNA was used to construct the libraries. The analytical performance was evaluated using reference standards at different allellic frequencies (0.1%, 1%, 5% and parental). The clinical performance was evaluated using plasma samples collected from 10 treatment naïve advanced stage III or IV NSCLC patients who were tested for tissue EGFR mutations. The bioinformatics analysis was performed using the proprietary Archer Analysis Software. RESULTS For the analytical validation, we achieved 100% sensitivity and specificity for the detection of known mutations in the reference standards. The limit of detection was 1% allelic frequency. Clinical validation showed that the clinical sensitivity and specificity of the assay for detecting EGFR mutation were 83.3% and 100% respectively. In addition, the NGS panel also detected other mutations of uncertain significance in 6 out of 10 patients. CONCLUSION This preliminary analysis showed that the custom 15-gene ctDNA NGS panel demonstrated good analytical and clinical performances for the EGFR mutation. Further studies incorporating the validation of other candidate gene mutations are warranted.
Collapse
Affiliation(s)
- Yock Ping Chow
- Clinical Research Centre, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Norziha Zainul Abidin
- Molecular Diagnostics Laboratory, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Ken Siong Kow
- Department of Medicine, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Lye Mun Tho
- Department of Medicine, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
| | - Chieh Lee Wong
- Clinical Research Centre, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
- Molecular Diagnostics Laboratory, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
- Department of Medicine, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
- Haematology Unit, Department of Medicine, Sunway Medical Centre, Petaling Jaya, Selangor Darul Ehsan, Malaysia
- Centre for Haematology, Hammersmith Hospital, London, United Kingdom
- Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Birknerova N, Mancikova V, Paul ED, Matyasovsky J, Cekan P, Palicka V, Parova H. Circulating Cell-Free DNA-Based Methylation Pattern in Saliva for Early Diagnosis of Head and Neck Cancer. Cancers (Basel) 2022; 14:4882. [PMID: 36230805 PMCID: PMC9563959 DOI: 10.3390/cancers14194882] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/17/2022] Open
Abstract
Head and neck cancer (HNC) remains one of the leading causes of mortality worldwide due to tumor diagnosis at a late stage, loco-regional aggression, and distant metastases. A standardized diagnostic procedure for HNC is a tissue biopsy that cannot faithfully portray the in-depth tumor dynamics. Therefore, there is an urgent need to develop simple, accurate, and non-invasive methods for cancer detection and follow-up. A saliva-based liquid biopsy allows convenient, non-invasive, and painless collection of high volumes of this biofluid, with the possibility of repetitive sampling, all enabling real-time monitoring of the disease. No approved clinical test for HNC has yet been established. However, epigenetic changes in saliva circulating cell-free DNA (cfDNA) have the potential for a wide range of clinical applications. Therefore, the aim of this review is to present an overview of cfDNA-based methylation patterns in saliva for early detection of HNC, with particular attention to circulating tumor DNA (ctDNA). Due to advancements in isolation and detection technologies, as well as next- and third-generation sequencing, recent data suggest that salivary biomarkers may be successfully applied for early detection of HNC in the future, but large prospective clinical trials are still warranted.
Collapse
Affiliation(s)
- Natalia Birknerova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital, Charles University, 50005 Hradec Kralove, Czech Republic
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Veronika Mancikova
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Evan David Paul
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Jan Matyasovsky
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Pavol Cekan
- MultiplexDX s.r.o., Comenius University Science Park, Ilkovicova 8, 84104 Bratislava, Slovakia
- MultiplexDX Inc., One Research Court, Suite 450, Rockville, MD 20850, USA
| | - Vladimir Palicka
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital, Charles University, 50005 Hradec Kralove, Czech Republic
| | - Helena Parova
- Department of Clinical Biochemistry and Diagnostics, Faculty of Medicine in Hradec Kralove and University Hospital, Charles University, 50005 Hradec Kralove, Czech Republic
| |
Collapse
|
32
|
25-Hydroxyvitamin D Serum Levels Linked to Single Nucleotide Polymorphisms (SNPs) (rs2228570, rs2282679, rs10741657) in Skeletal Muscle Aging in Institutionalized Elderly Men Not Supplemented with Vitamin D. Int J Mol Sci 2022; 23:ijms231911846. [PMID: 36233147 PMCID: PMC9569711 DOI: 10.3390/ijms231911846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/20/2022] [Accepted: 10/01/2022] [Indexed: 11/29/2022] Open
Abstract
Sarcopenia (Sp) is the loss of skeletal muscle mass associated with aging that results in an involution of muscle function and strength. Vitamin D deficiency is a common health problem worldwide, especially among the elderly, and hypovitaminosis D leads to musculoskeletal disorders. The aim of this study was to evaluate the impact and presence of a possible linkage between Single Nucleotide Polymorphisms (SNPs) CYP2R1 (rs10741657), GC (rs2282679), and VDR (rs2228570), serum 25-OH/D concentrations and the link with the degree of sarcopenia in 19 institutionalized elderly men not supplemented with vitamin D. Levels of 25-OH vitamin D were quantified with a commercial enzyme-linked immunosorbent assay kit and 3 SNPs were genotyped with KASPar assays. Significant differences in 25-OH/D concentration were determined between the bi-allelic combinations of rs228679 and rs228570. We detected statistically significant weak positive correlations between the AA (rs10741657 and rs228570) and TT (rs228679) and alleles and 25-OH/D and the probability of having higher 25-OH/D concentrations was 2- to 3-fold higher. However, the GG alleles of the 3 SNPs showed that the probability of having optimal 25-0H/D concentrations decreases by 32% for rs10741657, 38% for rs228679, and 74% for rs228570, showing a strong negative correlation between the degree of sarcopenia and 25-OH/D levels. Allelic variations in CYP2R1 (rs10741657), GC (rs2282679), and VDR (rs10741657) affect vitamin D levels and decisively influence the degree of sarcopenia in institutionalized elderly people.
Collapse
|
33
|
Radiogenomics, Breast Cancer Diagnosis and Characterization: Current Status and Future Directions. Methods Protoc 2022; 5:mps5050078. [PMID: 36287050 PMCID: PMC9611546 DOI: 10.3390/mps5050078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 12/05/2022] Open
Abstract
Breast cancer (BC) is a heterogeneous disease, affecting millions of women every year. Early diagnosis is crucial to increasing survival. The clinical workup of BC diagnosis involves diagnostic imaging and bioptic characterization. In recent years, technical advances in image processing allowed for the application of advanced image analysis (radiomics) to clinical data. Furthermore, -omics technologies showed their potential in the characterization of BC. Combining information provided by radiomics with -omics data can be important to personalize diagnostic and therapeutic work up in a clinical context for the benefit of the patient. In this review, we analyzed the recent literature, highlighting innovative approaches to combine imaging and biochemical/biological data, with the aim of identifying recent advances in radiogenomics applied to BC. The results of radiogenomic studies are encouraging approaches in a clinical setting. Despite this, as radiogenomics is an emerging area, the optimal approach has to face technical limitations and needs to be applied to large cohorts including all the expression profiles currently available for BC subtypes (e.g., besides markers from transcriptomics, proteomics and miRNomics, also other non-coding RNA profiles).
Collapse
|
34
|
Herreros-Villanueva M, Bujanda L, Ruiz-Rebollo L, Torremocha R, Ramos R, Martín R, Artigas MC. Circulating tumor DNA tracking in patients with pancreatic cancer using next-generation sequencing. GASTROENTEROLOGIA Y HEPATOLOGIA 2022; 45:637-644. [PMID: 35092761 DOI: 10.1016/j.gastrohep.2021.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/08/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pancreatic cancer remains one of the most devastating malignancies due to the absence of techniques for early diagnosis and the lack of target therapeutic options for advanced disease. Next Generation Sequencing (NGS) generates high throughput and valuable genetic information when evaluating circulating tumor DNA (ctDNA); however clinical utility of liquid biopsy in pancreatic cancer has not been demonstrated yet. The aim of this study was to evaluate whether results from a Next Generation Sequencing panel on plasma samples from pancreatic cancer patients could have a clinical significance. METHODS From December 2016 to January 2020, plasma samples from 27 patients with pancreatic ductal adenocarcinoma at two different tertiary Spanish Hospitals underwent ctDNA testing using a commercial NGS panel of 65 genes. Clinical data were available for these patients. VarsSome Clinical software was used to analyse NGS data and establish pathogenicity. RESULTS Evaluable NGS results were obtained in 18 out of the 27 plasma samples. Somatic pathogenic mutations were found mainly in KRAS, BRCA2, FLT3 and HNF1A, genes. Pathogenic mutations were detected in 50% of plasma samples from patient diagnosed at stages III-IV samples. FLT3 mutations were observed in 22.22% of samples which constitute a novel result in the field. CONCLUSIONS Liquid biopsy using NGS is a valuable tool but still not sensitive or specific enough to provide clinical utility in pancreatic cancer patients.
Collapse
Affiliation(s)
- Marta Herreros-Villanueva
- Facultad de Ciencias de la Salud, Universidad Isabel I, Burgos, Spain; Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, San Sebastián, Spain.
| | - Luis Bujanda
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, San Sebastián, Spain; Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco UPV/EHU, San Sebastián, Spain
| | - Lourdes Ruiz-Rebollo
- Department of Gastroenterology, Hospital Clínico de Valladolid, Valladolid, Spain
| | | | | | - Rubén Martín
- Facultad de Ciencias de la Salud, Universidad Isabel I, Burgos, Spain
| | | |
Collapse
|
35
|
Soni RK, Dimapanat L, Katari MS, Rai AJ. An Optimized Procedure for Proteomic Analysis of Extracellular Vesicles Using In-Stage Tip Digestion and DIA LC-MS/MS: Application to Liquid Biopsy in Cancer. Methods Mol Biol 2022; 2546:401-409. [PMID: 36127607 DOI: 10.1007/978-1-0716-2565-1_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Utilizing biofluids to identify cancer biomarkers has received considerable attention in the past decade. In this regard, serum and urine are convenient biofluids to noninvasively recapitulate information usually indicated by traditional tissue biopsies. In particular, we are interested in exploring the extracellular vesicle (ECV)-containing compartment of these fluids as a targeted source for cancer biomarker discovery. ECVs are membrane-enclosed particles, comprising of various fractions including exosomes, microvesicles, and apoptotic bodies. In both physiological and pathological states such as cancer, ECVs carry a rich load of molecular and protein cargoes, which aid in mediating intercellular communication between cells from various tissue types. Here we successfully enriched ECVs using a simple, low-cost, optimized method that we have developed; it is generalizable for the analysis of ECVs from multiple sample types. Such procedures are necessary as ECVs are nanoparticles that contain a treasure trove of large numbers of biomarkers each present at very low levels. Sample processing procedures can enrich for these vesicles and allow for the enhanced detection of proteins in downstream applications such as comprehensive proteomics methods using data-independent acquisition (DIA) and LC-MS/MS.
Collapse
Affiliation(s)
| | | | | | - Alex J Rai
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA. .,Department of Pathology & Cell Biology, New York, NY, USA. .,Special Chemistry Laboratories, New York, NY, USA.
| |
Collapse
|
36
|
Emerging Roles of Exosomes in Cancer for Possible Clinical Use. Cancers (Basel) 2022; 14:cancers14194603. [PMID: 36230526 PMCID: PMC9559386 DOI: 10.3390/cancers14194603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
|
37
|
Horgan D, Čufer T, Gatto F, Lugowska I, Verbanac D, Carvalho Â, Lal JA, Kozaric M, Toomey S, Ivanov HY, Longshore J, Malapelle U, Hasenleithner S, Hofman P, Alix-Panabières C. Accelerating the Development and Validation of Liquid Biopsy for Early Cancer Screening and Treatment Tailoring. Healthcare (Basel) 2022; 10:1714. [PMID: 36141326 PMCID: PMC9498805 DOI: 10.3390/healthcare10091714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/26/2022] [Accepted: 09/02/2022] [Indexed: 11/26/2022] Open
Abstract
Liquid biopsy (LB) is a minimally invasive method which aims to detect circulating tumor-derived components in body fluids. It provides an alternative to current cancer screening methods that use tissue biopsies for the confirmation of diagnosis. This paper attempts to determine how far the regulatory, policy, and governance framework provide support to LB implementation into healthcare systems and how the situation can be improved. For that reason, the European Alliance for Personalised Medicine (EAPM) organized series of expert panels including different key stakeholders to identify different steps, challenges, and opportunities that need to be taken to effectively implement LB technology at the country level across Europe. To accomplish a change of patient care with an LB approach, it is required to establish collaboration between multiple stakeholders, including payers, policymakers, the medical and scientific community, and patient organizations, both at the national and international level. Regulators, pharma companies, and payers could have a major impact in their own domain. Linking national efforts to EU efforts and vice versa could help in implementation of LB across Europe, while patients, scientists, physicians, and kit manufacturers can generate a pull by undertaking more research into biomarkers.
Collapse
Affiliation(s)
- Denis Horgan
- European Alliance for Personalised Medicine, 1040 Brussels, Belgium
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Faculty of Engineering and Technology, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Tanja Čufer
- Medical Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Francesco Gatto
- Department of Oncology-Pathology, Karolinska Institute, 171 64 Stockholm, Sweden
| | - Iwona Lugowska
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute and Oncology Centre (MSCI), 02781 Warsaw, Poland
| | - Donatella Verbanac
- Department of Medical Biochemistry and Hematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000 Zagreb, Croatia
| | - Ângela Carvalho
- i3S—nstituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Jonathan A. Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Faculty of Engineering and Technology, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj 211007, India
- Institute for Public Health Genomics, Department of Genetics and Cell Biology, GROW School of Oncology and Developmental Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Marta Kozaric
- European Alliance for Personalised Medicine, 1040 Brussels, Belgium
| | - Sinead Toomey
- Department of Molecular Medicine, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Smurfit Building, D09 Dublin, Ireland
| | - Hristo Y. Ivanov
- Department of Paediatric and Medical Genetics, Medical University, 4000 Plovdiv, Bulgaria
| | - John Longshore
- Astra Zeneca, 1800 Concord Pike, Wilmington, DE 19803, USA
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, 80137 Naples, Italy
| | - Samantha Hasenleithner
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, 8036 Graz, Austria
| | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Pasteur Hospital, University Côte d’Azur, CEDEX 01, 06001 Nice, France
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, 641 Avenue du Doyen Gaston Giraud, CEDEX 5, 34093 Montpellier, France
| |
Collapse
|
38
|
Fernández-Lázaro D, Garrosa E, Seco-Calvo J, Garrosa M. Potential Satellite Cell-Linked Biomarkers in Aging Skeletal Muscle Tissue: Proteomics and Proteogenomics to Monitor Sarcopenia. Proteomes 2022; 10:29. [PMID: 35997441 PMCID: PMC9396989 DOI: 10.3390/proteomes10030029] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/28/2022] [Accepted: 08/10/2022] [Indexed: 12/21/2022] Open
Abstract
Sarcopenia (Sp) is the loss of skeletal muscle mass associated with aging which causes an involution of muscle function and strength. Satellite cells (Sc) are myogenic stem cells, which are activated by injury or stress, and repair muscle tissue. With advancing age, there is a decrease in the efficiency of the regenerative response of Sc. Diagnosis occurs with the Sp established by direct assessments of muscle. However, the detection of biomarkers in real-time biofluids by liquid biopsy could represent a step-change in the understanding of the molecular biology and heterogeneity of Sp. A total of 13 potential proteogenomic biomarkers of Sp by their physiological and biological interaction with Sc have been previously described in the literature. Increases in the expression of GDF11, PGC-1α, Sirt1, Pax7, Pax3, Myf5, MyoD, CD34, MyoG, and activation of Notch signaling stimulate Sc activity and proliferation, which could modulate and delay Sp progression. On the contrary, intensified expression of GDF8, p16INK4a, Mrf4, and activation of the Wnt pathway would contribute to early Sp development by directly inducing reduced and/or altered Sc function, which would attenuate the restorative capacity of skeletal muscle. Additionally, tissue biopsy remains an important diagnostic tool. Proteomic profiling of aged muscle tissues has shown shifts toward protein isoforms characteristic of a fast-to-slow transition process and an elevated number of oxidized proteins. In addition, a strong association between age and plasma values of growth differentiation factor 15 (GDF-15) has been described and serpin family A member 3 (serpin A3n) was more secreted by atrophied muscle cells. The identification of these new biomarkers holds the potential to change personalized medicine because it could predict in real time the course of Sp by monitoring its evolution and assessing responses to potential therapeutic strategies.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42003 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
| | - Evelina Garrosa
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, Institute of Neurosciences of Castile and Leon (INCYL), University of Valladolid, 47005 Valladolid, Spain
| | - Jesús Seco-Calvo
- Institute of Biomedicine (IBIOMED), Physiotherapy Department, University of Leon, Campus de Vegazana, 24071 Leon, Spain
- Psychology Department, Faculty of Medicine, Basque Country University, 48900 Leioa, Spain
| | - Manuel Garrosa
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, Institute of Neurosciences of Castile and Leon (INCYL), University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
39
|
Liquid Biopsy and Circulating Biomarkers for the Diagnosis of Precancerous and Cancerous Oral Lesions. Noncoding RNA 2022; 8:ncrna8040060. [PMID: 36005828 PMCID: PMC9414906 DOI: 10.3390/ncrna8040060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Oral cancer is one of the most common malignancies worldwide, accounting for 2% of all cases annually and 1.8% of all cancer deaths. To date, tissue biopsy and histopathological analyses are the gold standard methods for the diagnosis of oral cancers. However, oral cancer is generally diagnosed at advanced stages with a consequent poor 5-year survival (~50%) due to limited screening programs and inefficient physical examination strategies. To address these limitations, liquid biopsy is recently emerging as a novel minimally invasive tool for the early identification of tumors as well as for the evaluation of tumor heterogeneity and prognosis of patients. Several studies have demonstrated that liquid biopsy in oral cancer could be useful for the detection of circulating biomarkers including circulating tumor DNA (ctDNA), microRNAs (miRNAs), proteins, and exosomes, thus improving diagnostic strategies and paving the way to personalized medicine. However, the application of liquid biopsy in oral cancer is still limited and further studies are needed to better clarify its clinical impact. The present manuscript aims to provide an updated overview of the potential use of liquid biopsy as an additional tool for the management of oral lesions by describing the available methodologies and the most promising biomarkers.
Collapse
|
40
|
de Nóbrega M, Dos Reis MB, Pereira ÉR, de Souza MF, de Syllos Cólus IM. The potential of cell-free and exosomal microRNAs as biomarkers in liquid biopsy in patients with prostate cancer. J Cancer Res Clin Oncol 2022; 148:2893-2910. [PMID: 35922694 DOI: 10.1007/s00432-022-04213-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/14/2022] [Indexed: 12/19/2022]
Abstract
PURPOSE Prostate cancer (PCa) is the 4th most diagnosed cancer and the 8th leading cause of cancer-related death worldwide. Currently, clinical risk stratification models including factors like PSA levels, Gleason score, and digital rectal examination are used for this purpose. There is a need for novel biomarkers that can distinguish between indolent and aggressive pathology and reduce the risk of overdiagnosis/overtreatment. Liquid biopsy has a non-invasive character, can lead to less morbidity and provide new biomarkers, such as miRNAs, that regulate diverse important cellular processes. Here, we report an extended revision about the role of cell-free and exosomal miRNAs (exomiRNAs) as biomarkers for screening, diagnosis, prognosis, or treatment of PCa. METHODS A comprehensive review of the published literature was conducted focusing on the usefulness, advantages, and clinical applications of cell-free and exomiRNAs in serum and plasma. Using PubMed database 53 articles published between 2012 and 2021 were selected and discussed from the perspective of their use as diagnostic, prognostic and therapeutic biomarkers for PCa. RESULTS We identify 119 miRNAs associated with PCa development and the cell-free and exosomal miR-21, miR-141, miR-200c, and miR-375 were consistently associated with progression in multiple cohorts/studies. However, standardized experimental procedures, and well-defined and clinically relevant cohort studies are urgently needed to confirm the biomarker potential of cell-free and exomiRNAs in serum or plasma. CONCLUSION Cell-free and exomiRNAs in serum or plasma are promising tools for be used as non-invasive biomarkers for diagnostic, prognosis, therapy improvement and clinical outcome prediction in PCa patients.
Collapse
Affiliation(s)
- Monyse de Nóbrega
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil
| | - Mariana Bisarro Dos Reis
- Barretos Cancer Hospital (Molecular Oncology Research Center), Barretos, SP, CEP 14784-400, Brazil
| | - Érica Romão Pereira
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil
| | - Marilesia Ferreira de Souza
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Laboratory of Mutagenesis and Oncogenetics, Center of Biologic Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR-445, Km 380-University Campus, Londrina, PR, CEP 86057-970, Brazil.
| |
Collapse
|
41
|
Wang L, Wang X, Guo E, Mao X, Miao S. Emerging roles of platelets in cancer biology and their potential as therapeutic targets. Front Oncol 2022; 12:939089. [PMID: 35936717 PMCID: PMC9355257 DOI: 10.3389/fonc.2022.939089] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/29/2022] [Indexed: 12/15/2022] Open
Abstract
The main role of platelets is to control bleeding and repair vascular damage via thrombosis. They have also been implicated to promote tumor metastasis through platelet-tumor cell interactions. Platelet-tumor cell interactions promote tumor cell survival and dissemination in blood circulation. Tumor cells are known to induce platelet activation and alter platelet RNA profiles. Liquid biopsies based on tumor-educated platelet biomarkers can detect tumors and correlate with prognosis, personalized therapy, treatment monitoring, and recurrence prediction. Platelet-based strategies for cancer prevention and tumor-targeted therapy include developing drugs that target platelet receptors, interfere with the release of platelet particles, inhibit platelet-specific enzymes, and utilize platelet-derived “nano-platelets” as a targeted drug delivery platform for tumor therapy. This review elaborates on platelet-tumor cell interactions and the molecular mechanisms and discusses future research directions for platelet-based liquid biopsy techniques and platelet-targeted anti-tumor strategies.
Collapse
Affiliation(s)
- Lei Wang
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Erliang Guo
- Department of Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xionghui Mao
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Xionghui Mao, ; Susheng Miao,
| | - Susheng Miao
- Department of Head and Neck Surgery, Harbin Medical University Cancer Hospital, Harbin, China
- *Correspondence: Xionghui Mao, ; Susheng Miao,
| |
Collapse
|
42
|
Guadagni S, Masedu F, Fiorentini G, Sarti D, Fiorentini C, Guadagni V, Apostolou P, Papasotiriou I, Parsonidis P, Valenti M, Ricevuto E, Bruera G, Farina AR, Mackay AR, Clementi M. Circulating tumour cell gene expression and chemosensitivity analyses: predictive accuracy for response to multidisciplinary treatment of patients with unresectable refractory recurrent rectal cancer or unresectable refractory colorectal cancer liver metastases. BMC Cancer 2022; 22:660. [PMID: 35710393 PMCID: PMC9202660 DOI: 10.1186/s12885-022-09770-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/08/2022] [Indexed: 01/19/2023] Open
Abstract
Background Patients with unresectable recurrent rectal cancer (RRC) or colorectal cancer (CRC) with liver metastases, refractory to at least two lines of traditional systemic therapy, may receive third line intraarterial chemotherapy (IC) and targeted therapy (TT) using drugs selected by chemosensitivity and tumor gene expression analyses of liquid biopsy-derived circulating tumor cells (CTCs). Methods In this retrospective study, 36 patients with refractory unresectable RRC or refractory unresectable CRC liver metastases were submitted for IC and TT with agents selected by precision oncotherapy chemosensitivity assays performed on liquid biopsy-derived CTCs, transiently cultured in vitro, and by tumor gene expression in the same CTC population, as a ratio to tumor gene expression in peripheral mononuclear blood cells (PMBCs) from the same individual. The endpoint was to evaluate the predictive accuracy of a specific liquid biopsy precision oncotherapy CTC purification and in vitro culture methodology for a positive RECIST 1.1 response to the therapy selected. Results Our analyses resulted in evaluations of 94.12% (95% CI 0.71–0.99) for sensitivity, 5.26% (95% CI 0.01–0.26) for specificity, a predictive value of 47.06% (95% CI 0.29–0.65) for a positive response, a predictive value of 50% (95% CI 0.01–0.98) for a negative response, with an overall calculated predictive accuracy of 47.22% (95% CI 0.30–0.64). Conclusions This is the first reported estimation of predictive accuracy derived from combining chemosensitivity and tumor gene expression analyses on liquid biopsy-derived CTCs, transiently cultured in vitro which, despite limitations, represents a baseline and benchmark which we envisage will be improve upon by methodological and technological advances and future clinical trials.
Collapse
Affiliation(s)
- Stefano Guadagni
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100, L'Aquila, Italy.
| | - Francesco Masedu
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Giammaria Fiorentini
- Department of Oncology and Hematology, Azienda Ospedaliera "Ospedali Riuniti Marche Nord", Pesaro, Italy
| | - Donatella Sarti
- Department of Oncology and Hematology, Azienda Ospedaliera "Ospedali Riuniti Marche Nord", Pesaro, Italy
| | - Caterina Fiorentini
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Veronica Guadagni
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | | | | | | | - Marco Valenti
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Enrico Ricevuto
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Gemma Bruera
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Antonietta R Farina
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Andrew R Mackay
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Marco Clementi
- Department of Applied Clinical and Biotechnological Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| |
Collapse
|
43
|
Yang M, Sun M, Zhang H. The Interaction Between Epigenetic Changes, EMT, and Exosomes in Predicting Metastasis of Colorectal Cancers (CRC). Front Oncol 2022; 12:879848. [PMID: 35712512 PMCID: PMC9197117 DOI: 10.3389/fonc.2022.879848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Worldwide, colorectal cancer (CRC) ranks as the third most common malignancy, and the second most deadly with nearly one million attributable deaths in 2020. Metastatic disease is present in nearly 25% of newly diagnosed CRC, and despite advances in chemotherapy, less than 20% will remain alive at 5 years. Epigenetic change plays a key role in the epithelial-to-mesenchymal transition (EMT), which is a crucial phenotype for metastasis and mainly includes DNA methylation, non-coding RNAs (ncRNAs), and N6-methyladenosine (m6A) RNA, seemingly valuable biomarkers in CRCs. For ncRNAs, there exists a “molecular sponge effect” between long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs). The detection of exosomes is a novel method in CRC monitoring, especially for predicting metastasis. There is a close relationship between exosomes and EMT in CRCs. This review summarizes the close relationship between epigenetic changes and EMT in CRCs and emphasizes the crucial function of exosomes in regulating the EMT process.
Collapse
|
44
|
Chen D, Zhang X, Zhu L, Liu C, Li Z. All on size-coded single bead set: a modular enrich-amplify-amplify strategy for attomolar level multi-immunoassay. Chem Sci 2022; 13:3501-3506. [PMID: 35432875 PMCID: PMC8943839 DOI: 10.1039/d1sc07048g] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Ultrasensitive protein analysis is of great significance for early diagnosis and biological studies. The core challenge is that many critical protein markers at extremely low aM to fM levels are difficult to accurately quantify because the target-induced weak signal may be easily masked by the surrounding background. Hence, we propose herein an ultrasensitive immunoassay based on a modular Single Bead Enrich-Amplify-Amplify (SBEAA) strategy. The highly efficient enrichment of targets on only a single bead (enrich) could confine the target-responsive signal output within a limited tiny space. Furthermore, a cascade tyramide signal amplification design enables remarkable in situ signal enhancement just affixed to the target. As a result, the efficient but space-confined fluorescence deposition on a single bead will significantly exceed the background and provide a wide dynamic range. Importantly, the SBEAA system can be modularly combined to meet different levels of clinical need regarding the detection sensitivity from aM to nM. Finally, a size-coded SBEAA set (SC-SBEAA) is also designed that allows ultrasensitive multi-immunoassay for rare samples in a single tube.
Collapse
Affiliation(s)
- Desheng Chen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 Shaanxi Province P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing 30 Xueyuan Road, Haidian District Beijing 100083 P. R. China
| | - Xiaobo Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 Shaanxi Province P. R. China
| | - Liping Zhu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 Shaanxi Province P. R. China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 Shaanxi Province P. R. China
| | - Zhengping Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119 Shaanxi Province P. R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing 30 Xueyuan Road, Haidian District Beijing 100083 P. R. China
| |
Collapse
|
45
|
Raza A, Khan AQ, Inchakalody VP, Mestiri S, Yoosuf ZSKM, Bedhiafi T, El-Ella DMA, Taib N, Hydrose S, Akbar S, Fernandes Q, Al-Zaidan L, Krishnankutty R, Merhi M, Uddin S, Dermime S. Dynamic liquid biopsy components as predictive and prognostic biomarkers in colorectal cancer. J Exp Clin Cancer Res 2022; 41:99. [PMID: 35292091 PMCID: PMC8922757 DOI: 10.1186/s13046-022-02318-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/07/2022] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide. The diagnosis, prognosis and therapeutic monitoring of CRC depends largely on tissue biopsy. However, due to tumor heterogeneity and limitations such as invasiveness, high cost and limited applicability in longitudinal monitoring, liquid biopsy has gathered immense attention in CRC. Liquid biopsy has several advantages over tissue biopsy including ease of sampling, effective monitoring, and longitudinal assessment of treatment dynamics. Furthermore, the importance of liquid biopsy is signified by approval of several liquid biopsy assays by regulatory bodies indicating the powerful approach of liquid biopsy for comprehensive CRC screening, diagnostic and prognostics. Several liquid biopsy biomarkers such as novel components of the microbiome, non-coding RNAs, extracellular vesicles and circulating tumor DNA are extensively being researched for their role in CRC management. Majority of these components have shown promising results on their clinical application in CRC including early detection, observe tumor heterogeneity for treatment and response, prediction of metastases and relapse and detection of minimal residual disease. Therefore, in this review, we aim to provide updated information on various novel liquid biopsy markers such as a) oral microbiota related bacterial network b) gut microbiome-associated serum metabolites c) PIWI-interacting RNAs (piRNAs), microRNA(miRNAs), Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and d) circulating tumor DNAs (ctDNA) and circulating tumor cells (CTC) for their role in disease diagnosis, prognosis, treatment monitoring and their applicability for personalized management of CRC.
Collapse
Affiliation(s)
- Afsheen Raza
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Varghese Philipose Inchakalody
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Sarra Mestiri
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | | | - Takwa Bedhiafi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Dina Moustafa Abo El-Ella
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Nassiba Taib
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shereena Hydrose
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shayista Akbar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Queenie Fernandes
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.,College of Medicine, Qatar University, Doha, Qatar
| | - Lobna Al-Zaidan
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Roopesh Krishnankutty
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Maysaloun Merhi
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute and Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Said Dermime
- Translational Cancer Research Facility, National Center for Cancer Care and Research, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
46
|
Chen K, Chen Z, Ou M, Wang J, Huang X, Wu Y, Zhong W, Yang J, Huang J, Huang M, Pan D. Clinical significance of circulating tumor cells in predicating the outcomes of patients with colorectal cancer. Clinics (Sao Paulo) 2022; 77:100070. [PMID: 36087570 PMCID: PMC9464896 DOI: 10.1016/j.clinsp.2022.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Relapse and metastasis of patients with Colorectal Cancer (CRC) is the major obstacle to the long-term life of patients. Its mechanisms remain defined. METHODS A total of 48 CRC patients were enrolled and 68 samples were obtained from the peripheral blood of patients before or after treatments in this study. Twenty non-cancer patients were also detected as a negative control. Circulating Tumor Cells (CTCs), including Epithelial CTCs (eCTCs), Mesenchymal (MCTCs), and epithelial/mesenchymal mixed phenotypes (mixed CTCs), were identified by CanPatrolTM CTC enrichment and RNA in situ hybridization. The relationship between CTCs number and Progression-Free Survival (PFS) or Overall Survival (OS) was evaluated. RESULTS Thirty-four of 48 patients (70.8%) were found to have positive CTCs. Total CTCs and MCTCs in the post-treatment had a significant correlation PFS and OS. When total CTCs or MCTCs in 5 mL blood of patients were more than 6 CTCs or 5 MCTCs, PFS of the patients was significantly shorter (p < 0.05) than that in patients with less than 6 CTCs or 5 MCTCs. The patients with > 5 CTCs count changes were found to exhibit poor PFS and OS rates (p < 0.05). CONCLUSION Total CTCs and MCTCs number detection in patients with colorectal cancer was very useful biomarker for predicting the prognosis of patients. Higher CTCs or MCTCs had poorer PFS and OS rates.
Collapse
Affiliation(s)
- Kehe Chen
- Department of Medical Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zhenxiang Chen
- Department of Medical Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Mei Ou
- Department of Medical Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Junping Wang
- Department of Medical Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xiao Huang
- Department of Medical Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yingying Wu
- Department of Medical Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Wenhe Zhong
- Department of Medical Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jiao Yang
- Department of Medical Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jinging Huang
- Department of Medical Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Min Huang
- Department of Medical Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Deng Pan
- Department of Medical Oncology, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
47
|
Purification and Phosphoproteomic Analysis of Plasma-Derived Extracellular Vesicles. Methods Mol Biol 2022; 2504:147-156. [PMID: 35467285 PMCID: PMC9437911 DOI: 10.1007/978-1-0716-2341-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A successful phosphoproteomics analysis of extracellular vesicles (EVs) requires a unique approach, fine-tuned to address the challenges that have plagued plasma-based biomarker discovery. Here, I detail a procedure, which combines EVtrap-based high-recovery EV isolation, phase-transfer surfactant method for protein extraction, and PolyMAC-based enrichment of phosphopeptides. The combination of these methods provides a highly effective strategy for EV-based phosphoproteome analysis and leads to the discovery of novel phospho-markers previously undetectable.
Collapse
|
48
|
Huang Z, Yang M. Molecular Network of Colorectal Cancer and Current Therapeutic Options. Front Oncol 2022; 12:852927. [PMID: 35463300 PMCID: PMC9018988 DOI: 10.3389/fonc.2022.852927] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/11/2022] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC), a leading cause of cancer-related mortalities globally, results from the accumulation of multiple genetic and epigenetic alterations in the normal colonic and rectum epithelium, leading to the progression from colorectal adenomas to invasive carcinomas. Almost half of CRC patients will develop metastases in the course of the disease and most patients with metastatic CRC are incurable. Particularly, the 5-year survival rate of patients with stage 4 CRC at diagnosis is less than 10%. Although genetic understanding of these CRC tumors and paired metastases has led to major advances in elucidating early driver genes responsible for carcinogenesis and metastasis, the pathophysiological contribution of transcriptional and epigenetic aberrations in this malignancy which influence many central signaling pathways have attracted attention recently. Therefore, treatments that could affect several different molecular pathways may have pivotal implications for their efficacy. In this review, we summarize our current knowledge on the molecular network of CRC, including cellular signaling pathways, CRC microenvironment modulation, epigenetic changes, and CRC biomarkers for diagnosis and predictive/prognostic use. We also provide an overview of opportunities for the treatment and prevention strategies in this field.
Collapse
Affiliation(s)
- Zhe Huang
- The Department of 11 General Surgery, Minimally Invasive Colorectal Hernia Unit, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingli Yang
- The Department of 3Oncology, Gastrointestinal Cancer Unit, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Mingli Yang,
| |
Collapse
|
49
|
Huang RH, Wang LX, He J, Gao W. Application and prospects of single cell sequencing in tumors. Biomark Res 2021; 9:88. [PMID: 34895349 PMCID: PMC8665603 DOI: 10.1186/s40364-021-00336-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer is an intricate disease with inherent intra-tumor heterogeneity at the cellular level because of genetic changes and environmental differences. Cellular heterogeneity exists even within the same tumor type. Small deviations in a genome or transcriptome can lead to significant differences in function. Conventional bulk population sequencing, which produces admixed populations of cells, can only provide an average expression signal for one cell population, ignoring differences between individual cells. Important advances in sequencing have been made in recent years. Single cell sequencing starts in a single cell, thereby increasing our capability to characterize intratumor heterogeneity. This technology has been used to analyze genetic variation, specific metabolic activity, and evolutionary processes in tumors, which may help us understand tumor occurrence and development and improve our understanding of the tumor microenvironment. In addition, it provides a theoretical basis for the development of clinical treatments, especially for personalized medicine. In this article, we briefly introduce Single cell sequencing technology, summarize the application of Single cell sequencing to study the tumor microenvironment, as well as its therapeutic application in different clinical procedures.
Collapse
Affiliation(s)
- Ruo Han Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Le Xin Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Jing He
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
50
|
Serratì S, Palazzo A, Lapenna A, Mateos H, Mallardi A, Marsano RM, Quarta A, Del Rosso M, Azzariti A. Salting-Out Approach Is Worthy of Comparison with Ultracentrifugation for Extracellular Vesicle Isolation from Tumor and Healthy Models. Biomolecules 2021; 11:biom11121857. [PMID: 34944501 PMCID: PMC8699204 DOI: 10.3390/biom11121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022] Open
Abstract
The role of extracellular vesicles (EVs) has been completely re-evaluated in the recent decades, and EVs are currently considered to be among the main players in intercellular communication. Beyond their functional aspects, there is strong interest in the development of faster and less expensive isolation protocols that are as reliable for post-isolation characterisations as already-established methods. Therefore, the identification of easy and accessible EV isolation techniques with a low price/performance ratio is of paramount importance. We isolated EVs from a wide spectrum of samples of biological and clinical interest by choosing two isolation techniques, based on their wide use and affordability: ultracentrifugation and salting-out. We collected EVs from human cancer and healthy cell culture media, yeast, bacteria and Drosophila culture media and human fluids (plasma, urine and saliva). The size distribution and concentration of EVs were measured by nanoparticle tracking analysis and dynamic light scattering, and protein depletion was measured by a colorimetric nanoplasmonic assay. Finally, the EVs were characterised by flow cytometry. Our results showed that the salting-out method had a good efficiency in EV separation and was more efficient in protein depletion than ultracentrifugation. Thus, salting-out may represent a good alternative to ultracentrifugation.
Collapse
Affiliation(s)
- Simona Serratì
- Nanotecnology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, Viale Orazio Flacco 65, 70124 Bari, Italy;
- Correspondence: (S.S.); (A.P.)
| | - Antonio Palazzo
- Nanotecnology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, Viale Orazio Flacco 65, 70124 Bari, Italy;
- Correspondence: (S.S.); (A.P.)
| | - Annamaria Lapenna
- Department of Chemistry, University of Bari and CSGI (Center for Colloid and Surface Science), Via Orabona 4, 70125 Bari, Italy; (A.L.); (H.M.)
| | - Helena Mateos
- Department of Chemistry, University of Bari and CSGI (Center for Colloid and Surface Science), Via Orabona 4, 70125 Bari, Italy; (A.L.); (H.M.)
| | - Antonia Mallardi
- Istituto per i Processi Chimico Fisici, National Research Council (IPCF-CNR), c/o ChemistryDepartment, Via Orabona 4, 70125 Bari, Italy;
| | | | - Alessandra Quarta
- CNR NANOTEC—Istituto di Nanotecnologia, National Research Council (CNR), Via Monteroni, 73100 Lecce, Italy;
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni 50, 50134 Florence, Italy;
| | - Amalia Azzariti
- Nanotecnology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, Viale Orazio Flacco 65, 70124 Bari, Italy;
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Viale Orazio Flacco 65, 70124 Bari, Italy
| |
Collapse
|