1
|
Ghaderi S, Mohammadi S, Fatehi F. Current evidence of arterial spin labeling in amyotrophic lateral sclerosis: A systematic review. Clin Neurol Neurosurg 2024; 249:108691. [PMID: 39700696 DOI: 10.1016/j.clineuro.2024.108691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/04/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024]
Abstract
OBJECTIVE This study aimed to evaluate the utility of arterial spin labeling (ASL) in assessing cerebral blood flow (CBF) changes in amyotrophic lateral sclerosis (ALS), and its potential as a biomarker for early diagnosis. METHODS A systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Studies that employed ASL to compare CBF between ALS patients and healthy controls were included. RESULTS Seven studies were included. A consistent finding across these studies was hypoperfusion in both the motor and non-motor regions, particularly in the frontotemporal cortex. Hypoperfusion in motor regions was correlated with functional impairment and was observed prior to structural changes, suggesting its potential as an early biomarker. There is limited evidence to suggest that monitoring changes in CBF patterns in the brain. Besides, limited findings showed initial hyperperfusion in regions not yet involved in the pathological process, and progressing hypoperfusion in regions with increasing pathological burden. CONCLUSIONS This review highlights the potential of ASL as a valuable tool for understanding the neurovascular dysfunction in ALS. Further research is required to validate its clinical utility for diagnosing ALS and monitoring disease progression.
Collapse
Affiliation(s)
- Sadegh Ghaderi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sana Mohammadi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Fatehi
- Neuromuscular Research Center, Department of Neurology, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Neurology, University Hospitals of Leicester NHS Trust, Leicester, UK
| |
Collapse
|
2
|
Burgetova A, Dusek P, Uher T, Vaneckova M, Vejrazka M, Burgetova R, Horakova D, Srpova B, Kalousova M, Noskova L, Levova K, Krasensky J, Lambert L. CSF Markers of Oxidative Stress Are Associated with Brain Atrophy and Iron Accumulation in a 2-Year Longitudinal Cohort of Early MS. Int J Mol Sci 2023; 24:10048. [PMID: 37373196 DOI: 10.3390/ijms241210048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/27/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
In this prospective longitudinal study, we quantified regional brain volume and susceptibility changes during the first two years after the diagnosis of multiple sclerosis (MS) and identified their association with cerebrospinal fluid (CSF) markers at baseline. Seventy patients underwent MRI (T1 and susceptibility weighted images processed to quantitative susceptibility maps, QSM) with neurological examination at the diagnosis and after two years. In CSF obtained at baseline, the levels of oxidative stress, products of lipid peroxidation, and neurofilaments light chain (NfL) were determined. Brain volumetry and QSM were compared with a group of 58 healthy controls. In MS patients, regional atrophy was identified in the striatum, thalamus, and substantia nigra. Magnetic susceptibility increased in the striatum, globus pallidus, and dentate and decreased in the thalamus. Compared to controls, MS patients developed greater atrophy of the thalamus, and a greater increase in susceptibility in the caudate, putamen, globus pallidus and a decrease in the thalamus. Of the multiple calculated correlations, only the decrease in brain parenchymal fraction, total white matter, and thalamic volume in MS patients negatively correlated with increased NfL in CSF. Additionally, negative correlation was found between QSM value in the substantia nigra and peroxiredoxin-2, and QSM value in the dentate and lipid peroxidation levels.
Collapse
Affiliation(s)
- Andrea Burgetova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Petr Dusek
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Tomas Uher
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Manuela Vaneckova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Martin Vejrazka
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Romana Burgetova
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
- Department of Radiology, Third Faculty of Medicine, Charles University, 100 34 Prague, Czech Republic
| | - Dana Horakova
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Barbora Srpova
- Department of Neurology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Marta Kalousova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Libuse Noskova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Katerina Levova
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Jan Krasensky
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| | - Lukas Lambert
- Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 121 08 Prague, Czech Republic
| |
Collapse
|
3
|
Jakimovski D, Gibney BL, Marr K, Ramasamy DP, Dwyer MG, Bergsland N, Weinstock-Guttman B, Ramanathan M, Zivadinov R. Lower cerebral arterial blood flow is associated with greater serum neurofilament light chain levels in multiple sclerosis patients. Eur J Neurol 2022; 29:2299-2308. [PMID: 35474598 DOI: 10.1111/ene.15374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 03/14/2022] [Accepted: 04/21/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hypoperfusion, vascular pathology, and cardiovascular risk factors are associated with disease severity in multiple sclerosis (MS). We aimed to assess relationships between cerebral arterial blood flow (CABF) and serum neurofilament light chain (sNfL), as neuronal damage biomarker. METHODS AND MATERIALS Total CABF was measured in 137 patients (86 clinically isolated syndrome (CIS)/relapsing-remitting (RR) and 51 progressive MS (PMS)) and 48 healthy controls (HCs) using Doppler ultrasound. sNfL was quantitated using single molecule assay (Simoa). 3.0T MRI examination allowed quantification of T2 lesion and whole-brain volume (WBV). Multiple linear regression models determined the sNfL associated with CABF after correction for demographic and MRI-derived variables. RESULTS After adjustment for age, sex and BMI, total CABF remained statistically significant and model comparisons showed that CABF explained additional 2.6% of the sNfL variance (β=-0.167, p=0.044). CABF also remained significant in a step-wise regression model (β=0.18, p=0.034) upon the inclusion of T2 lesion burden and WBV effects. Patients in the lowest CABF quartile (CABF≤761mL/min) had significantly higher sNfL (34.6pg/mL versus 23.9pg/mL, adjusted-p=0.042) when compared to the highest quartile (CABF≥1130mL/min). CONCLUSION Lower CABF is associated with increased sNfL in MS patients, highlighting the relationship between cerebral hypoperfusion and axonal pathology.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Brianna L Gibney
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Karen Marr
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Deepa P Ramasamy
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michael G Dwyer
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.,IRCCS, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Murali Ramanathan
- Department of Pharmaceutical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Department of Neurology, Buffalo Neuroimaging Analysis Center (BNAC), Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
4
|
Jakimovski D, Dwyer MG, Bergsland N, Weinstock-Guttman B, Zivadinov R. Disease biomarkers in multiple sclerosis: current serum neurofilament light chain perspectives. Neurodegener Dis Manag 2021; 11:329-340. [PMID: 34196596 DOI: 10.2217/nmt-2020-0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The continuous neuroinflammatory and neurodegenerative pathology in multiple sclerosis (MS) results in irreversible accumulation of physical and cognitive disability. Reliable early detection of MS disease processes can aid in the diagnosis, monitoring and treatment management of MS patients. Recent assay technological advancements now allow reliable quantification of serum-based neurofilament light chain (sNfL) levels, which provide temporal information regarding the degree of neuroaxonal damage. The relationship and predictive value of sNfL with clinical and cognitive outcomes, other paraclinical measures and treatment response is reviewed. sNfL measurement is an emerging, noninvasive and disease-responsive MS biomarker that is currently utilized in research and clinical trial settings. Understanding sNfL confounders and further assay standardization will allow clinical implementation of this biomarker.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.,IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, 20148, Italy
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment & Research Center, Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
5
|
Zamboni P. Vascular Biomarkers: Physics Parameters and Circulating Molecules Can Be Two Faces of the Same Coin. Diagnostics (Basel) 2021; 11:diagnostics11020217. [PMID: 33540677 PMCID: PMC7912994 DOI: 10.3390/diagnostics11020217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
The arterial, venous and lymphatic conduits of human circulation are a fascinating field of research [...].
Collapse
Affiliation(s)
- Paolo Zamboni
- Department of Surgery, Vascular Disease Centre University Hospital of Ferrara, 44124 Cona, Italy
| |
Collapse
|