1
|
Liu Y, Zhan L, Kangas J, Wang Y, Bischof J. Fast and ultrafast thermal contrast amplification of gold nanoparticle-based immunoassays. Sci Rep 2022; 12:12729. [PMID: 35882876 PMCID: PMC9321340 DOI: 10.1038/s41598-022-14841-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/13/2022] [Indexed: 11/27/2022] Open
Abstract
For highly sensitive point-of-care (POC) diagnostics, we explored the limit of thermal contrast amplification (TCA) reading of gold nanoparticles (GNPs/mm2) at test regions in immunoassays. More specifically, we built and compared fast (minute scale) and ultrafast (seconds scale) TCA setups using continuous-wave (CW) and ms pulsed lasers, respectively. TCA improved the limit of detection (LoD) for silica-core gold nanoshells (GNSs) preloaded in nitrocellulose (NC) membrane as model lateral flow immunoassays (LFAs) by 10- to 20-fold over visual reading. While the ultrafast TCA led to higher thermal signals, this came with a twofold loss in LoD vs. fast TCA primarily due to noise within the infrared sensor and a necessity to limit power to avoid burning. To allow higher laser power, and therefore amplification fold, we also explored transparent glass coverslip substrate as a model microfluidic immunoassay (MIA). We found the ultrafast TCA reading of GNS-coated coverslips achieved a maximal signal amplification (57-fold) over visual reading of model LFAs. Therefore, ultrafast TCA-MIA is promising for ultrasensitive and ultrafast diagnostics. Further advantages of using TCA in MIA vs. LFA could include lower sample volume, multiplexed tests, higher throughput, and fast reading. In summary, TCA technology is able to enhance the sensitivity and speed of reading GNPs (GNPs/mm2) within both LFAs and MIAs.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Li Zhan
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joseph Kangas
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yiru Wang
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - John Bischof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA. .,Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
2
|
Hui YY, Tang Y, Azuma T, Lin H, Liao F, Chen Q, Kuo J, Wang Y, Chang H. Design and implementation of a low‐cost portable reader for thermometric lateral flow immunoassay. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yuen Yung Hui
- Institute of Atomic and Molecular Sciences Academia Sinica Taipei Taiwan
| | - Yi‐Xiu Tang
- Institute of Atomic and Molecular Sciences Academia Sinica Taipei Taiwan
| | - Terumitsu Azuma
- Institute of Atomic and Molecular Sciences Academia Sinica Taipei Taiwan
- Department of Physics National Taiwan University Taipei Taiwan
| | - Hsin‐Hung Lin
- Institute of Atomic and Molecular Sciences Academia Sinica Taipei Taiwan
| | - Fang‐Zhen Liao
- Institute of Atomic and Molecular Sciences Academia Sinica Taipei Taiwan
| | - Qing‐Ying Chen
- Institute of Atomic and Molecular Sciences Academia Sinica Taipei Taiwan
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei Taiwan
| | - Jen‐Hwa Kuo
- Institute of Atomic and Molecular Sciences Academia Sinica Taipei Taiwan
- Institute of Brain Sciences National Yang Ming Chiao Tung University Taipei Taiwan
| | - Yuh‐Lin Wang
- Institute of Atomic and Molecular Sciences Academia Sinica Taipei Taiwan
- Department of Physics National Taiwan University Taipei Taiwan
| | - Huan‐Cheng Chang
- Institute of Atomic and Molecular Sciences Academia Sinica Taipei Taiwan
- Department of Chemical Engineering National Taiwan University of Science and Technology Taipei Taiwan
- Department of Chemistry National Taiwan Normal University Taipei Taiwan
| |
Collapse
|
3
|
Azuma T, Hui YY, Chen OY, Wang YL, Chang HC. Thermometric lateral flow immunoassay with colored latex beads as reporters for COVID-19 testing. Sci Rep 2022; 12:3905. [PMID: 35273286 PMCID: PMC8913781 DOI: 10.1038/s41598-022-07963-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/28/2022] [Indexed: 12/16/2022] Open
Abstract
Temperature sensing is a promising method of enhancing the detection sensitivity of lateral flow immunoassay (LFIA) for point-of-care testing. A temperature increase of more than 100 °C can be readily achieved by photoexcitation of reporters like gold nanoparticles (GNPs) or colored latex beads (CLBs) on LFIA strips with a laser power below 100 mW. Despite its promise, processes involved in the photothermal detection have not yet been well-characterized. Here, we provide a fundamental understanding of this thermometric assay using non-fluorescent CLBs as the reporters deposited on nitrocellulose membrane. From a measurement for the dependence of temperature rises on the number density of membrane-bound CLBs, we found a 1.3-fold (and 3.2-fold) enhancement of the light absorption by red (and black) latex beads at 520 nm. The enhancement was attributed to the multiple scattering of light in this highly porous medium, a mechanism that could make a significant impact on the sensitivity improvement of LFIA. The limit of detection was measured to be 1 × 105 particles/mm2. In line with previous studies using GNPs as the reporters, the CLB-based thermometric assay provides a 10× higher sensitivity than color visualization. We demonstrated a practical use of this thermometric immunoassay with rapid antigen tests for COVID-19.
Collapse
Affiliation(s)
- Terumitsu Azuma
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan, ROC.,Department of Physics, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Yuen Yung Hui
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan, ROC
| | - Oliver Y Chen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan, ROC
| | - Yuh-Lin Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan, ROC.,Department of Physics, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Huan-Cheng Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 106, Taiwan, ROC. .,Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 106, Taiwan, ROC. .,Department of Chemistry, National Taiwan Normal University, Taipei, 106, Taiwan, ROC.
| |
Collapse
|
4
|
Liu Y, Zhan L, Shen JW, Baro B, Alemany A, Sackrison J, Mitjà O, Bischof JC. fM-aM Detection of the SARS-CoV-2 Antigen by Advanced Lateral Flow Immunoassay Based on Gold Nanospheres. ACS APPLIED NANO MATERIALS 2021; 4:13826-13837. [PMID: 34957379 PMCID: PMC8691201 DOI: 10.1021/acsanm.1c03217] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/02/2021] [Indexed: 05/04/2023]
Abstract
The SARS-CoV-2 global pandemic created an unprecedented need for rapid, sensitive, and inexpensive point-of-care (POC) diagnostic tests to treat and control the disease. Many POC SARS-CoV-2 lateral flow immunoassays (LFAs) have been developed and/or commercialized, but with only limited sensitivity (μM-fM). We created an advanced LFA based on gold nanospheres (GNSs) with comprehensive assay redesign for enhanced specific binding and thermal contrast amplification (TCA) on GNSs for signal amplification, which enabled fM-aM detection sensitivity for SARS-CoV-2 spike receptor-binding domain (RBD) proteins within 30 min. The advanced LFA can visually detect RBD proteins down to 3.6 and 28.6 aM in buffer and human nasopharyngeal wash, respectively. This is the first reported LFA achieving sensitivity comparable to that of the PCR (aM-zM) by visual reading, which was much more sensitive than traditional LFAs. We also developed a fast (<1 min) TCA reading algorithm, with results showing that this TCA could distinguish 26-32% visual false negatives for clinical commercial LFAs. When our advanced LFAs were applied with this TCA, the sensitivities were further improved by eightfold to 0.45 aM (in buffer) and 3.6 aM (in the human nasopharyngeal wash) with a semiquantitative readout. Our proposed advanced LFA with a TCA diagnostic platform can help control the current SARS-CoV-2 pandemic. Furthermore, the simplicity and speed with which this assay was assembled may also facilitate preparedness for future pandemics.
Collapse
Affiliation(s)
- Yilin Liu
- Department
of Mechanical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Li Zhan
- Department
of Mechanical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jesse W. Shen
- Department
of Mechanical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| | - Bàrbara Baro
- ISGlobal,
Hospital Clínic, Universitat de Barcelona, Barcelona 08036, Spain
| | - Andrea Alemany
- Fight
AIDS and Infectious Diseases Foundation, Badalona 08916, Spain
- Hospital
Universitari Germans Trias i Pujol, Badalona 08916, Spain
| | - James Sackrison
- 3984
Hunters Hill Way, Minnetonka, Minnesota 55345, United States
| | - Oriol Mitjà
- Fight
AIDS and Infectious Diseases Foundation, Badalona 08916, Spain
- Hospital
Universitari Germans Trias i Pujol, Badalona 08916, Spain
- Lihir Medical
Centre − International SOS, Lihir Island, New Ireland 633, Papua New Guinea
| | - John C. Bischof
- Department
of Mechanical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
- Department
of Biomedical Engineering, University of
Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|