1
|
Bourdillon AT. Computer Vision-Radiomics & Pathognomics. Otolaryngol Clin North Am 2024; 57:719-751. [PMID: 38910065 DOI: 10.1016/j.otc.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The role of computer vision in extracting radiographic (radiomics) and histopathologic (pathognomics) features is an extension of molecular biomarkers that have been foundational to our understanding across the spectrum of head and neck disorders. Especially within head and neck cancers, machine learning and deep learning applications have yielded advances in the characterization of tumor features, nodal features, and various outcomes. This review aims to overview the landscape of radiomic and pathognomic applications, informing future work to address gaps. Novel methodologies will be needed to potentially engineer ways of integrating multidimensional data inputs to examine disease features to guide prognosis comprehensively and ultimately clinical management.
Collapse
Affiliation(s)
- Alexandra T Bourdillon
- Department of Otolaryngology-Head & Neck Surgery, University of California-San Francisco, San Francisco, CA 94115, USA.
| |
Collapse
|
2
|
Alabi RO, Elmusrati M, Leivo I, Almangush A, Mäkitie AA. Artificial Intelligence-Driven Radiomics in Head and Neck Cancer: Current Status and Future Prospects. Int J Med Inform 2024; 188:105464. [PMID: 38728812 DOI: 10.1016/j.ijmedinf.2024.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Radiomics is a rapidly growing field used to leverage medical radiological images by extracting quantitative features. These are supposed to characterize a patient's phenotype, and when combined with artificial intelligence techniques, to improve the accuracy of diagnostic models and clinical outcome prediction. OBJECTIVES This review aims at examining the application areas of artificial intelligence-based radiomics (AI-based radiomics) for the management of head and neck cancer (HNC). It further explores the workflow of AI-based radiomics for personalized and precision oncology in HNC. Finally, it examines the current challenges of AI-based radiomics in daily clinical oncology and offers possible solutions to these challenges. METHODS Comprehensive electronic databases (PubMed, Medline via Ovid, Scopus, Web of Science, CINAHL, and Cochrane Library) were searched following the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. The quality of included studies and their risk of biases were evaluated using the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD)and Prediction Model Risk of Bias Assessment Tool (PROBAST). RESULTS Out of the 659 search hits retrieved, 45 fulfilled the inclusion criteria. Our review revealed that the application of AI-based radiomics model as an ancillary tool for improved decision-making in HNC management includes radiomics-based cancer diagnosis and radiomics-based cancer prognosis. The radiomics-based cancer diagnosis includes tumor staging, tumor grading, and classification of malignant and benign tumors. Similarly, radiomics-based cancer prognosis includes prediction for treatment response, recurrence, metastasis, and survival. In addition, the challenges in the implementation of these models for clinical evaluations include data imbalance, feature engineering (extraction and selection), model generalizability, multi-modal fusion, and model interpretability. CONCLUSION Considering the highly subjective and interobserver variability that is peculiar to the interpretation of medical images by expert clinicians, AI-based radiomics seeks to offer potentially useful quantitative information, which is not visible to the human eye or unintentionally often remain ignored during clinical imaging practice. By enabling the extraction of this type of information, AI-based radiomics has the potential to revolutionize HNC oncology, providing a platform for more personalized, higher quality, and cost-effective care for HNC patients.
Collapse
Affiliation(s)
- Rasheed Omobolaji Alabi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Industrial Digitalization, School of Technology and Innovations, University of Vaasa, Vaasa, Finland.
| | - Mohammed Elmusrati
- Department of Industrial Digitalization, School of Technology and Innovations, University of Vaasa, Vaasa, Finland
| | - Ilmo Leivo
- University of Turku, Institute of Biomedicine, Pathology, Turku, Finland
| | - Alhadi Almangush
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; University of Turku, Institute of Biomedicine, Pathology, Turku, Finland; Department of Pathology, University of Helsinki, Helsinki, Finland; Faculty of Dentistry, Misurata University, Misurata, Libya
| | - Antti A Mäkitie
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
3
|
Carsuzaa F, Chabrillac E, Marcy PY, Mehanna H, Thariat J. Advances and residual knowledge gaps in the neck management of head and neck squamous cell carcinoma patients with advanced nodal disease undergoing definitive (chemo)radiotherapy for their primary. Strahlenther Onkol 2024; 200:553-567. [PMID: 38600366 DOI: 10.1007/s00066-024-02228-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/03/2024] [Indexed: 04/12/2024]
Abstract
PURPOSE Substantial changes have been made in the neck management of patients with head and neck squamous cell carcinomas (HNSCC) in the past century. These have been fostered by changes in cancer epidemiology and technological progress in imaging, surgery, or radiotherapy, as well as disruptive concepts in oncology. We aimed to review changes in nodal management, with a focus on HNSCC patients with nodal involvement (cN+) undergoing (chemo)radiotherapy. METHODS A narrative review was conducted to review current advances and address knowledge gaps in the multidisciplinary management of the cN+ neck in the context of (chemo)radiotherapy. RESULTS Metastatic neck nodes are associated with poorer prognosis and poorer response to radiotherapy, and have therefore been systematically treated by surgery. Radical neck dissection (ND) has gradually evolved toward more personalized and less morbid approaches, i.e., from functional to selective ND. Omission of ND has been made feasible by use of positron-emission tomography/computed tomography to monitor the radiation response in cN+ patients. Human papillomavirus-driven oropharyngeal cancers and their cystic nodes have shown dramatically better prognosis than tobacco-related cancers, justifying a specific prognostic classification (AJCC) creation. Finally, considering the role of lymph nodes in anti-tumor immunity, de-escalation of ND and prophylactic nodal irradiation in combination are intense areas of investigation. However, the management of bulky cN3 disease remains an issue, as aggressive multidisciplinary strategies or innovative combined treatments have not yet significantly improved their prognosis. CONCLUSION Personalized neck management is an increasingly important aspect of the overall therapeutic strategies in cN+ HNSCC.
Collapse
Affiliation(s)
- Florent Carsuzaa
- Department of Oto-Rhino-Laryngology & Head and Neck Surgery, Poitiers University Hospital, Poitiers, France
| | - Emilien Chabrillac
- Department of Surgery, University Cancer Institute of Toulouse-Oncopole, Toulouse, France
| | - Pierre Yves Marcy
- Department of Radiology, Clinique du Cap d'Or, La Seyne-sur-mer, France
| | - Hisham Mehanna
- Institute for Head and Neck Studies and Education (InHANSE), University of Birmingham, Birmingham, UK
| | - Juliette Thariat
- Department of radiotherapy, Centre François Baclesse, Caen, France.
- Laboratoire de physique Corpusculaire, IN2P3/ENSICAEN/CNRS, UMR 6534, Normandie Université, Caen, France.
| |
Collapse
|
4
|
Ansari G, Mirza-Aghazadeh-Attari M, Mosier KM, Fakhry C, Yousem DM. Radiomics Features in Predicting Human Papillomavirus Status in Oropharyngeal Squamous Cell Carcinoma: A Systematic Review, Quality Appraisal, and Meta-Analysis. Diagnostics (Basel) 2024; 14:737. [PMID: 38611650 PMCID: PMC11011663 DOI: 10.3390/diagnostics14070737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
We sought to determine the diagnostic accuracy of radiomics features in predicting HPV status in oropharyngeal squamous cell carcinoma (SCC) compared to routine paraclinical measures used in clinical practice. Twenty-six articles were included in the systematic review, and thirteen were used for the meta-analysis. The overall sensitivity of the included studies was 0.78, the overall specificity was 0.76, and the overall area under the ROC curve was 0.84. The diagnostic odds ratio (DOR) equaled 12 (8, 17). Subgroup analysis showed no significant difference between radiomics features extracted from CT or MR images. Overall, the studies were of low quality in regard to radiomics quality score, although most had a low risk of bias based on the QUADAS-2 tool. Radiomics features showed good overall sensitivity and specificity in determining HPV status in OPSCC, though the low quality of the included studies poses problems for generalizability.
Collapse
Affiliation(s)
- Golnoosh Ansari
- Department of Radiology, Northwestern Hospital, Northwestern School of Medicine, Chicago, IL 60611, USA;
| | - Mohammad Mirza-Aghazadeh-Attari
- Division of Interventional Radiology, Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Kristine M. Mosier
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Carole Fakhry
- Department of Otolaryngology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - David M. Yousem
- Division of Neuroradiology, Department of Radiology and Radiological Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| |
Collapse
|
5
|
van Staalduinen EK, Matthews R, Khan A, Punn I, Cattell RF, Li H, Franceschi A, Samara GJ, Czerwonka L, Bangiyev L, Duong TQ. Improved Cervical Lymph Node Characterization among Patients with Head and Neck Squamous Cell Carcinoma Using MR Texture Analysis Compared to Traditional FDG-PET/MR Features Alone. Diagnostics (Basel) 2023; 14:71. [PMID: 38201380 PMCID: PMC10802850 DOI: 10.3390/diagnostics14010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Accurate differentiation of benign and malignant cervical lymph nodes is important for prognosis and treatment planning in patients with head and neck squamous cell carcinoma. We evaluated the diagnostic performance of magnetic resonance image (MRI) texture analysis and traditional 18F-deoxyglucose positron emission tomography (FDG-PET) features. This retrospective study included 21 patients with head and neck squamous cell carcinoma. We used texture analysis of MRI and FDG-PET features to evaluate 109 histologically confirmed cervical lymph nodes (41 metastatic, 68 benign). Predictive models were evaluated using area under the curve (AUC). Significant differences were observed between benign and malignant cervical lymph nodes for 36 of 41 texture features (p < 0.05). A combination of 22 MRI texture features discriminated benign and malignant nodal disease with AUC, sensitivity, and specificity of 0.952, 92.7%, and 86.7%, which was comparable to maximum short-axis diameter, lymph node morphology, and maximum standard uptake value (SUVmax). The addition of MRI texture features to traditional FDG-PET features differentiated these groups with the greatest AUC, sensitivity, and specificity (0.989, 97.5%, and 94.1%). The addition of the MRI texture feature to lymph node morphology improved nodal assessment specificity from 70.6% to 88.2% among FDG-PET indeterminate lymph nodes. Texture features are useful for differentiating benign and malignant cervical lymph nodes in patients with head and neck squamous cell carcinoma. Lymph node morphology and SUVmax remain accurate tools. Specificity is improved by the addition of MRI texture features among FDG-PET indeterminate lymph nodes. This approach is useful for differentiating benign and malignant cervical lymph nodes.
Collapse
Affiliation(s)
- Eric K. van Staalduinen
- Albert Einstein College of Medicine and Montefiore Medical Center, Department of Radiology, Bronx, NY 10467, USA
- Stony Brook Medicine, Department of Radiology, Stony Brook, NY 11794, USA (A.F.); (L.B.)
| | - Robert Matthews
- Stony Brook Medicine, Department of Radiology, Stony Brook, NY 11794, USA (A.F.); (L.B.)
| | - Adam Khan
- Stony Brook Medicine, Department of Radiology, Stony Brook, NY 11794, USA (A.F.); (L.B.)
| | - Isha Punn
- Stony Brook Medicine, Department of Radiology, Stony Brook, NY 11794, USA (A.F.); (L.B.)
| | - Renee F. Cattell
- Stony Brook Medicine, Department of Radiology, Stony Brook, NY 11794, USA (A.F.); (L.B.)
| | - Haifang Li
- Stony Brook Medicine, Department of Radiology, Stony Brook, NY 11794, USA (A.F.); (L.B.)
| | - Ana Franceschi
- Stony Brook Medicine, Department of Radiology, Stony Brook, NY 11794, USA (A.F.); (L.B.)
| | - Ghassan J. Samara
- Stony Brook Medicine, Department of Radiology, Stony Brook, NY 11794, USA (A.F.); (L.B.)
| | - Lukasz Czerwonka
- Stony Brook Medicine, Department of Radiology, Stony Brook, NY 11794, USA (A.F.); (L.B.)
| | - Lev Bangiyev
- Stony Brook Medicine, Department of Radiology, Stony Brook, NY 11794, USA (A.F.); (L.B.)
| | - Tim Q. Duong
- Albert Einstein College of Medicine and Montefiore Medical Center, Department of Radiology, Bronx, NY 10467, USA
| |
Collapse
|
6
|
Šedienė S, Kulakienė I, Urbonavičius BG, Korobeinikova E, Rudžianskas V, Povilonis PA, Jaselskė E, Adlienė D, Juozaitytė E. Development of a Model Based on Delta-Radiomic Features for the Optimization of Head and Neck Squamous Cell Carcinoma Patient Treatment. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1173. [PMID: 37374377 DOI: 10.3390/medicina59061173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Background and Objectives: To our knowledge, this is the first study that investigated the prognostic value of radiomics features extracted from not only staging 18F-fluorodeoxyglucose positron emission tomography (FDG PET/CT) images, but also post-induction chemotherapy (ICT) PET/CT images. This study aimed to construct a training model based on radiomics features obtained from PET/CT in a cohort of patients with locally advanced head and neck squamous cell carcinoma treated with ICT, to predict locoregional recurrence, development of distant metastases, and the overall survival, and to extract the most significant radiomics features, which were included in the final model. Materials and Methods: This retrospective study analyzed data of 55 patients. All patients underwent PET/CT at the initial staging and after ICT. Along the classical set of 13 parameters, the original 52 parameters were extracted from each PET/CT study and an additional 52 parameters were generated as a difference between radiomics parameters before and after the ICT. Five machine learning algorithms were tested. Results: The Random Forest algorithm demonstrated the best performance (R2 0.963-0.998) in the majority of datasets. The strongest correlation in the classical dataset was between the time to disease progression and time to death (r = 0.89). Another strong correlation (r ≥ 0.8) was between higher-order texture indices GLRLM_GLNU, GLRLM_SZLGE, and GLRLM_ZLNU and standard PET parameters MTV, TLG, and SUVmax. Patients with a higher numerical expression of GLCM_ContrastVariance, extracted from the delta dataset, had a longer survival and longer time until progression (p = 0.001). Good correlations were observed between Discretized_SUVstd or Discretized_SUVSkewness and time until progression (p = 0.007). Conclusions: Radiomics features extracted from the delta dataset produced the most robust data. Most of the parameters had a positive impact on the prediction of the overall survival and the time until progression. The strongest single parameter was GLCM_ContrastVariance. Discretized_SUVstd or Discretized_SUVSkewness demonstrated a strong correlation with the time until progression.
Collapse
Affiliation(s)
- Severina Šedienė
- Department of Radiology of Lithuanian, University of Health Sciences, Eivenių g. 2, LT-50161 Kaunas, Lithuania
| | - Ilona Kulakienė
- Department of Radiology of Lithuanian, University of Health Sciences, Eivenių g. 2, LT-50161 Kaunas, Lithuania
| | - Benas Gabrielis Urbonavičius
- Department of Physics, Faculty of Mathematics and Natural Sciences, Kaunas University of Technology, Studentu g. 50, LT-51368 Kaunas, Lithuania
| | - Erika Korobeinikova
- Oncology Institute of Lithuanian, University of Health Sciences, Eiveniu g. 2, LT-50161 Kaunas, Lithuania
| | - Viktoras Rudžianskas
- Oncology Institute of Lithuanian, University of Health Sciences, Eiveniu g. 2, LT-50161 Kaunas, Lithuania
| | - Paulius Algirdas Povilonis
- Medical Academy of Lithuania, University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania
| | - Evelina Jaselskė
- Department of Physics, Faculty of Mathematics and Natural Sciences, Kaunas University of Technology, Studentu g. 50, LT-51368 Kaunas, Lithuania
| | - Diana Adlienė
- Department of Physics, Faculty of Mathematics and Natural Sciences, Kaunas University of Technology, Studentu g. 50, LT-51368 Kaunas, Lithuania
| | - Elona Juozaitytė
- Oncology Institute of Lithuanian, University of Health Sciences, Eiveniu g. 2, LT-50161 Kaunas, Lithuania
| |
Collapse
|
7
|
Zhang YP, Zhang XY, Cheng YT, Li B, Teng XZ, Zhang J, Lam S, Zhou T, Ma ZR, Sheng JB, Tam VCW, Lee SWY, Ge H, Cai J. Artificial intelligence-driven radiomics study in cancer: the role of feature engineering and modeling. Mil Med Res 2023; 10:22. [PMID: 37189155 DOI: 10.1186/s40779-023-00458-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients' anatomy. However, the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians. Moreover, some potentially useful quantitative information in medical images, especially that which is not visible to the naked eye, is often ignored during clinical practice. In contrast, radiomics performs high-throughput feature extraction from medical images, which enables quantitative analysis of medical images and prediction of various clinical endpoints. Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis, demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine. However, radiomics remains in a developmental phase as numerous technical challenges have yet to be solved, especially in feature engineering and statistical modeling. In this review, we introduce the current utility of radiomics by summarizing research on its application in the diagnosis, prognosis, and prediction of treatment responses in patients with cancer. We focus on machine learning approaches, for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling. Furthermore, we introduce the stability, reproducibility, and interpretability of features, and the generalizability and interpretability of models. Finally, we offer possible solutions to current challenges in radiomics research.
Collapse
Affiliation(s)
- Yuan-Peng Zhang
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China
| | - Xin-Yun Zhang
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yu-Ting Cheng
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
| | - Bing Li
- Department of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Xin-Zhi Teng
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Saikit Lam
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Ta Zhou
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Zong-Rui Ma
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jia-Bao Sheng
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Victor C W Tam
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Shara W Y Lee
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Hong Ge
- Department of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Jing Cai
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
8
|
An Investigation on Radiomics Feature Handling for HNSCC Staging Classification. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The incidence of Head and Neck Squamous Cell Carcinoma (HNSCC) has been growing in the last few decades. Its diagnosis is usually performed through clinical evaluation and analyzing radiological images, then confirmed by histopathological examination, an invasive and time-consuming operation. The recent advances in the artificial intelligence field are leading to interesting results in the early diagnosis, personalized treatment and monitoring of HNSCC only by analyzing radiological images, without performing a tissue biopsy. The large amount of radiological images and the increasing interest in radiomics approaches can help to develop machine learning (ML) methods to support diagnosis. In this work, we propose an ML method based on the use of radiomics features, extracted from CT and PET images, to classify the disease in terms of pN-Stage, pT-Stage and Overall Stage. After the extraction of radiomics features, a selection step is performed to remove dataset redundancy. Finally, ML methods are employed to complete the classification task. Our pipeline is applied on the “Head-Neck-PET-CT” TCIA open-source dataset, considering a cohort of 201 patients from four different institutions. An AUC of 97%, 83% and 93% in terms of pN-Stage, pT-Stage and Overall Stage classification, respectively, is achieved. The obtained results are promising, showing the potential efficiency of the use of radiomics approaches in staging classification.
Collapse
|
9
|
Boguszewicz Ł. Predictive Biomarkers for Response and Toxicity of Induction Chemotherapy in Head and Neck Cancers. Front Oncol 2022; 12:900903. [PMID: 35875133 PMCID: PMC9299243 DOI: 10.3389/fonc.2022.900903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/24/2022] [Indexed: 01/17/2023] Open
Abstract
This review focuses on the molecular biology of head and neck squamous cell carcinomas and presents current and emerging biomarkers of the response of patients to induction chemotherapy. The usefulness of genes, proteins, and parameters from diagnostic clinical imaging as well as other clinicopathological parameters is thoroughly discussed. The role of induction chemotherapy before radiotherapy or before chemo-radiotherapy is still debated, as the data on its efficacy are somehow confusing. Despite the constant improvement of treatment protocols and the introduction of new cytostatics, there is still no consensus regarding the use of induction chemotherapy in the treatment of head and neck cancer, with the possible exception of larynx preservation. Such difficulties indicate that potential future treatment strategies should be personalized. Personalized medicine, in which individual tumor genetics drive the selection of targeted therapies and treatment plans for each patient, has recently emerged as the next generation of cancer therapy. Early prediction of treatment outcome or its toxicity may be highly beneficial for those who are at risk of the development of severe toxicities or treatment failure—a different treatment strategy may be applied to these patients, sparing them unnecessary pain. The literature search was carried out in the PubMed and ScienceDirect databases as well as in the selected conference proceedings repositories. Of the 265 articles and abstracts found, only 30 met the following inclusion criteria: human studies, analyzing prediction of induction chemotherapy outcome or toxicity based on the pretreatment (or after the first cycle, if more cycles of induction were administered) data, published after the year 2015. The studies regarding metastatic and recurrent cancers as well as the prognosis of overall survival or the outcome of consecutive treatment were not taken into consideration. As revealed from the systematic inspection of the papers, there are over 100 independent parameters analyzed for their suitability as prognostic markers in HNSCC patients undergoing induction chemotherapy. Some of them are promising, but usually they lack important features such as high specificity and sensitivity, low cost, high positive predictive value, clinical relevance, short turnaround time, etc. Subsequent studies are necessary to confirm the usability of the biomarkers for personal medicine.
Collapse
Affiliation(s)
- Łukasz Boguszewicz
- Department of Medical Physics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Warszawa, Poland
| |
Collapse
|
10
|
Radiomics for Everyone: A New Tool Simplifies Creating Parametric Maps for the Visualization and Quantification of Radiomics Features. Tomography 2021; 7:477-487. [PMID: 34564303 PMCID: PMC8482265 DOI: 10.3390/tomography7030041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/05/2021] [Accepted: 09/14/2021] [Indexed: 12/16/2022] Open
Abstract
Aim was to develop a user-friendly method for creating parametric maps that would provide a comprehensible visualization and allow immediate quantification of radiomics features. For this, a self-explanatory graphical user interface was designed, and for the proof of concept, maps were created for CT and MR images and features were compared to those from conventional extractions. Especially first-order features were concordant between maps and conventional extractions, some even across all examples. Potential clinical applications were tested on CT and MR images for the differentiation of pulmonary lesions. In these sample applications, maps of Skewness enhanced the differentiation of non-malignant lesions and non-small lung carcinoma manifestations on CT images and maps of Variance enhanced the differentiation of pulmonary lymphoma manifestations and fungal infiltrates on MR images. This new and simple method for creating parametric maps makes radiomics features visually perceivable, allows direct feature quantification by placing a region of interest, can improve the assessment of radiological images and, furthermore, can increase the use of radiomics in clinical routine.
Collapse
|
11
|
Keek SA, Wesseling FWR, Woodruff HC, van Timmeren JE, Nauta IH, Hoffmann TK, Cavalieri S, Calareso G, Primakov S, Leijenaar RTH, Licitra L, Ravanelli M, Scheckenbach K, Poli T, Lanfranco D, Vergeer MR, Leemans CR, Brakenhoff RH, Hoebers FJP, Lambin P. A Prospectively Validated Prognostic Model for Patients with Locally Advanced Squamous Cell Carcinoma of the Head and Neck Based on Radiomics of Computed Tomography Images. Cancers (Basel) 2021; 13:3271. [PMID: 34210048 PMCID: PMC8269129 DOI: 10.3390/cancers13133271] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Locoregionally advanced head and neck squamous cell carcinoma (HNSCC) patients have high relapse and mortality rates. Imaging-based decision support may improve outcomes by optimising personalised treatment, and support patient risk stratification. We propose a multifactorial prognostic model including radiomics features to improve risk stratification for advanced HNSCC, compared to TNM eighth edition, the gold standard. PATIENT AND METHODS Data of 666 retrospective- and 143 prospective-stage III-IVA/B HNSCC patients were collected. A multivariable Cox proportional-hazards model was trained to predict overall survival (OS) using diagnostic CT-based radiomics features extracted from the primary tumour. Separate analyses were performed using TNM8, tumour volume, clinical and biological variables, and combinations thereof with radiomics features. Patient risk stratification in three groups was assessed through Kaplan-Meier (KM) curves. A log-rank test was performed for significance (p-value < 0.05). The prognostic accuracy was reported through the concordance index (CI). RESULTS A model combining an 11-feature radiomics signature, clinical and biological variables, TNM8, and volume could significantly stratify the validation cohort into three risk groups (p < 0∙01, CI of 0.79 as validation). CONCLUSION A combination of radiomics features with other predictors can predict OS very accurately for advanced HNSCC patients and improves on the current gold standard of TNM8.
Collapse
Affiliation(s)
- Simon A. Keek
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (S.A.K.); (H.C.W.); (S.P.)
| | - Frederik W. R. Wesseling
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Postbus 3035, 6202 NA Maastricht, The Netherlands; (F.W.R.W.); (F.J.P.H.)
| | - Henry C. Woodruff
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (S.A.K.); (H.C.W.); (S.P.)
- Department of Radiology and Nuclear Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Janita E. van Timmeren
- Department of Radiation Oncology, University Hospital Zürich, University of Zürich, Rämistrasse 100, 8091 Zürich, Switzerland;
| | - Irene H. Nauta
- Amsterdam UMC, Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Postbus 7057, 1007 MB Amsterdam, The Netherlands; (I.H.N.); (C.R.L.); (R.H.B.)
| | - Thomas K. Hoffmann
- Department of Otorhinolaryngology, Head Neck Surgery, i2SOUL Consortium, University of Ulm, Frauensteige 14a (Haus 18), 89075 Ulm, Germany;
| | - Stefano Cavalieri
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Giacomo Venezian, University of Milan, 1 20133 Milano, Italy; (S.C.); (L.L.)
| | - Giuseppina Calareso
- Radiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori via Giacomo Venezian, 1 20133 Milano, Italy;
| | - Sergey Primakov
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (S.A.K.); (H.C.W.); (S.P.)
| | | | - Lisa Licitra
- Head and Neck Medical Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, via Giacomo Venezian, University of Milan, 1 20133 Milano, Italy; (S.C.); (L.L.)
- Department of Oncology and Hemato-Oncology, University of Milan, via S. Sofia 9/1, 20122 Milano, Italy
| | - Marco Ravanelli
- Department of Medicine and Surgery, University of Brescia, Viale Europa, 11-25123 Brescia, Italy;
| | - Kathrin Scheckenbach
- Department. of Otorhinolaryngology-Head and Neck Surgery, University Hospital Düsseldorf, Moorenstr. 5, 40225 Düsseldorf, Germany;
| | - Tito Poli
- Maxillofacial Surgery Unit, Department of Medicine and Surgery, University of Parma-University Hospital of Parma, via Università, 12-I, 43121 Parma, Italy; (T.P.); (D.L.)
| | - Davide Lanfranco
- Maxillofacial Surgery Unit, Department of Medicine and Surgery, University of Parma-University Hospital of Parma, via Università, 12-I, 43121 Parma, Italy; (T.P.); (D.L.)
| | - Marije R. Vergeer
- Amsterdam UMC, Cancer Center Amsterdam, Department of Radiation Oncology, Vrije Universiteit Amsterdam, Postbus 7057, 1007 MB Amsterdam, The Netherlands;
| | - C. René Leemans
- Amsterdam UMC, Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Postbus 7057, 1007 MB Amsterdam, The Netherlands; (I.H.N.); (C.R.L.); (R.H.B.)
| | - Ruud H. Brakenhoff
- Amsterdam UMC, Otolaryngology/Head and Neck Surgery, Cancer Center Amsterdam, Vrije Universiteit Amsterdam, Postbus 7057, 1007 MB Amsterdam, The Netherlands; (I.H.N.); (C.R.L.); (R.H.B.)
| | - Frank J. P. Hoebers
- Department of Radiation Oncology (MAASTRO), GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre+, Postbus 3035, 6202 NA Maastricht, The Netherlands; (F.W.R.W.); (F.J.P.H.)
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW-School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (S.A.K.); (H.C.W.); (S.P.)
- Department of Radiology and Nuclear Medicine, GROW-School for Oncology, Maastricht University Medical Centre+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|