1
|
Butson C, Ntekim N, Acord S, Marks W. Genetic Panel Reveals Coexisting Neuromuscular Disorders in Patients With Duchenne Muscular Dystrophy. J Child Neurol 2024:8830738241284683. [PMID: 39429168 DOI: 10.1177/08830738241284683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Duchenne muscular dystrophy is a genetically based neuromuscular disorder characterized by progressive physical impairment and cardiomyopathy in children, leading to fatal cardiac or respiratory failure. Duchenne muscular dystrophy shares some overlapping clinical features with other disorders, complicating clinical differentiation. We hypothesized that some Duchenne muscular dystrophy patients may have a secondary neuromuscular disorders that could negatively skew data during pharmaceutical clinical trials and lead to incomplete treatment plans. Consecutive genetic panels on 353 patients were reviewed. Thirty-two (32; 9.1%) patients with Duchenne muscular dystrophy were identified. Three (3; 9.4%) were found to have at least 1 genetically confirmed secondary neuromuscular disorder. Overlooking these coexisting disorders could lead to unexpected treatment failures, potentially affecting medication efficacy in trials or commercial use. Secondary neuromuscular disorders should be considered in Duchenne muscular dystrophy patients before clinical trial enrollment or treatment planning, with expanded genetic testing, such as whole exome sequencing or whole genome sequencing, likely to reveal even more secondary disorders.
Collapse
Affiliation(s)
- Carter Butson
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX, USA
| | - Nedeke Ntekim
- Texas College of Osteopathic Medicine, UNT Health Science Center, Fort Worth, TX, USA
| | - Stephanie Acord
- Department of Neurology, Cook Children's Medical Center, Fort Worth, TX, USA
| | - Warren Marks
- Department of Neurology, Cook Children's Medical Center, Fort Worth, TX, USA
| |
Collapse
|
2
|
Mansfield C, Boeri M, Coulter J, Baranowski E, Sparks S, An Haack K, Hamed A. The value of knowing: preferences for genetic testing to diagnose rare muscle diseases. Orphanet J Rare Dis 2024; 19:173. [PMID: 38649872 PMCID: PMC11036564 DOI: 10.1186/s13023-024-03160-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 03/30/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Genetic testing can offer early diagnosis and subsequent treatment of rare neuromuscular diseases. Options for these tests could be improved by understanding the preferences of patients for the features of different genetic tests, especially features that increase information available to patients. METHODS We developed an online discrete-choice experiment using key attributes of currently available tests for Pompe disease with six test attributes: number of rare muscle diseases tested for with corresponding probability of diagnosis, treatment availability, time from testing to results, inclusion of secondary findings, necessity of a muscle biopsy, and average time until final diagnosis if the first test is negative. Respondents were presented a choice between two tests with different costs, with respondents randomly assigned to one of two costs. Data were analyzed using random-parameters logit. RESULTS A total of 600 online respondents, aged 18 to 50 years, were recruited from the U.S. general population and included in the final analysis. Tests that targeted more diseases, required less time from testing to results, included information about unrelated health risks, and were linked to shorter time to the final diagnosis were preferred and associated with diseases with available treatment. Men placed relatively more importance than women on tests for diseases with available treatments. Most of the respondents would be more willing to get a genetic test that might return unrelated health information, with women exhibiting a statistically significant preference. While respondents were sensitive to cost, 30% of the sample assigned to the highest cost was willing to pay $500 for a test that could offer a diagnosis almost 2 years earlier. CONCLUSION The results highlight the value people place on the information genetic tests can provide about their health, including faster diagnosis of rare, unexplained muscle weakness, but also the value of tests for multiple diseases, diseases without treatments, and incidental findings. An earlier time to diagnosis can provide faster access to treatment and an end to the diagnostic journey, which patients highly prefer.
Collapse
Affiliation(s)
- Carol Mansfield
- Health Preference Assessment, RTI Health Solutions, Research Triangle Park, NC, USA
| | - Marco Boeri
- Health Preference Assessment, RTI Health Solutions, Research Triangle Park, NC, USA
| | - Josh Coulter
- Health Preference Assessment, RTI Health Solutions, Research Triangle Park, NC, USA
| | | | | | | | - Alaa Hamed
- Medical Affairs, Sanofi, Cambridge, MA, USA
| |
Collapse
|
3
|
Hakim Zada F, Ahmad Azahari AHS, Wong SW, Ali A, Ismail NAS. Understanding Challenges of Genetic Testing on Neuromuscular Disorders from the Parental Lens. J Pers Med 2023; 13:1652. [PMID: 38138879 PMCID: PMC10744978 DOI: 10.3390/jpm13121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/14/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Neuromuscular disorders, characterized by progressive muscle degeneration and weakness, present substantial challenges to both affected individuals and their families. Genetic testing assumes a pivotal role in facilitating early diagnosis, intervention, treatment, and informed family planning for these conditions. The objective of this qualitative study is to delve into the knowledge, awareness, and perceptions surrounding genetic testing within the cohort of parents caring for individuals with neuromuscular disorders in Malaysia. A semi-structured interview approach was employed to elicit data from parents of individuals diagnosed with neuromuscular disorders, encompassing those with clinical diagnoses and those diagnosed through genetic testing. Examination of the interview responses yielded nine overarching themes, which furnish invaluable insights into the perspectives of Malaysian parents concerning genetic testing. The study discerned several challenges associated with genetic testing, notably encompassing the limited awareness among parents, the financial constraints associated with genetic testing, and the perceived significance of genetic testing in the context of neuromuscular disorders. The findings suggest that the level of knowledge and awareness pertaining to genetic testing for neuromuscular disorders among parents in Malaysia varies, with initial levels of awareness ranging from relatively low to reasonably sufficient prior to and following the birth of an affected child. However, the investigation revealed that parents tended to cultivate more favorable perceptions regarding genetic testing subsequent to their experience with genetic counseling. This underscores the potential for heightened awareness and comprehension as a consequence of the personal experience of parenting an affected child confirmed through genetic testing and genetic counseling, ultimately influencing parental awareness.
Collapse
Affiliation(s)
- Farheen Hakim Zada
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (F.H.Z.); (A.H.S.A.A.); (S.W.W.); (A.A.)
| | - Ahmad Hazim Syakir Ahmad Azahari
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (F.H.Z.); (A.H.S.A.A.); (S.W.W.); (A.A.)
| | - Sau Wei Wong
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (F.H.Z.); (A.H.S.A.A.); (S.W.W.); (A.A.)
| | - Adli Ali
- Department of Pediatric, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia; (F.H.Z.); (A.H.S.A.A.); (S.W.W.); (A.A.)
- Research Centre, Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Noor Akmal Shareela Ismail
- Research Centre, Hospital Tunku Ampuan Besar Tuanku Aishah Rohani, UKM Specialist Children’s Hospital, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
4
|
Strafella C, Caputo V, Bortolani S, Torchia E, Megalizzi D, Trastulli G, Monforte M, Colantoni L, Caltagirone C, Ricci E, Tasca G, Cascella R, Giardina E. Whole exome sequencing highlights rare variants in CTCF, DNMT1, DNMT3A, EZH2 and SUV39H1 as associated with FSHD. Front Genet 2023; 14:1235589. [PMID: 37674478 PMCID: PMC10477786 DOI: 10.3389/fgene.2023.1235589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction: Despite the progress made in the study of Facioscapulohumeral Dystrophy (FSHD), the wide heterogeneity of disease complicates its diagnosis and the genotype-phenotype correlation among patients and within families. In this context, the present work employed Whole Exome Sequencing (WES) to investigate known and unknown genetic contributors that may be involved in FSHD and may represent potential disease modifiers, even in presence of a D4Z4 Reduced Allele (DRA). Methods: A cohort of 126 patients with clinical signs of FSHD were included in the study, which were characterized by D4Z4 sizing, methylation analysis and WES. Specific protocols were employed for D4Z4 sizing and methylation analysis, whereas the Illumina® Next-Seq 550 system was utilized for WES. The study included both patients with a DRA compatible with FSHD diagnosis and patients with longer D4Z4 alleles. In case of patients harboring relevant variants from WES, the molecular analysis was extended to the family members. Results: The WES data analysis highlighted 20 relevant variants, among which 14 were located in known genetic modifiers (SMCHD1, DNMT3B and LRIF1) and 6 in candidate genes (CTCF, DNMT1, DNMT3A, EZH2 and SUV39H1). Most of them were found together with a permissive short (4-7 RU) or borderline/long DRA (8-20 RU), supporting the possibility that different genes can contribute to disease heterogeneity in presence of a FSHD permissive background. The segregation and methylation analysis among family members, together with clinical findings, provided a more comprehensive picture of patients. Discussion: Our results support FSHD pathomechanism being complex with a multigenic contribution by several known (SMCHD1, DNMT3B, LRIF1) and possibly other candidate genes (CTCF, DNMT1, DNMT3A, EZH2, SUV39H1) to disease penetrance and expressivity. Our results further emphasize the importance of extending the analysis of molecular findings within the proband's family, with the purpose of providing a broader framework for understanding single cases and allowing finer genotype-phenotype correlations in FSHD-affected families.
Collapse
Affiliation(s)
- Claudia Strafella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Valerio Caputo
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Sara Bortolani
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Eleonora Torchia
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Domenica Megalizzi
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Giulia Trastulli
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Mauro Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Luca Colantoni
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Caltagirone
- Department of Clinical and Behavioral Neurology, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Enzo Ricci
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle UponTyne, United Kingdom
| | - Raffaella Cascella
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| | - Emiliano Giardina
- Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, Rome, Italy
- Medical Genetics Laboratory, Department of Biomedicine and Prevention, Tor Vergata University, Rome, Italy
| |
Collapse
|
5
|
Ng KWP, Chin HL, Chin AXY, Goh DLM. Using gene panels in the diagnosis of neuromuscular disorders: A mini-review. Front Neurol 2022; 13:997551. [PMID: 36313509 PMCID: PMC9602396 DOI: 10.3389/fneur.2022.997551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/21/2022] [Indexed: 09/26/2023] Open
Abstract
The diagnosis of inherited neuromuscular disorders is challenging due to their genetic and phenotypic variability. Traditionally, neurophysiology and histopathology were primarily used in the initial diagnostic approach to these conditions. Sanger sequencing for molecular diagnosis was less frequently utilized as its application was a time-consuming and cost-intensive process. The advent and accessibility of next-generation sequencing (NGS) has revolutionized the evaluation process of genetically heterogenous neuromuscular disorders. Current NGS diagnostic testing approaches include gene panels, whole exome sequencing (WES), and whole genome sequencing (WGS). Gene panels are often the most widely used, being more accessible due to availability and affordability. In this mini-review, we describe the benefits and risks of clinical genetic testing. We also discuss the utility, benefits, challenges, and limitations of using gene panels in the evaluation of neuromuscular disorders.
Collapse
Affiliation(s)
- Kay W. P. Ng
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Hui-Lin Chin
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amanda X. Y. Chin
- Division of Neurology, Department of Medicine, National University Hospital, Singapore, Singapore
| | - Denise Li-Meng Goh
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat - National University Children's Medical Institute, National University Hospital, Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Koczwara KE, Lake NJ, DeSimone AM, Lek M. Neuromuscular disorders: finding the missing genetic diagnoses. Trends Genet 2022; 38:956-971. [PMID: 35908999 DOI: 10.1016/j.tig.2022.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022]
Abstract
Neuromuscular disorders (NMDs) are a wide-ranging group of diseases that seriously affect the quality of life of affected individuals. The development of next-generation sequencing revolutionized the diagnosis of NMD, enabling the discovery of hundreds of NMD genes and many more pathogenic variants. However, the diagnostic yield of genetic testing in NMD cohorts remains incomplete, indicating a large number of genetic diagnoses are not identified through current methods. Fortunately, recent advancements in sequencing technologies, analytical tools, and high-throughput functional screening provide an opportunity to circumvent current challenges. Here, we discuss reasons for missing genetic diagnoses in NMD, how emerging technologies and tools can overcome these hurdles, and examine future approaches to improving diagnostic yields in NMD.
Collapse
Affiliation(s)
- Katherine E Koczwara
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Nicole J Lake
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Alec M DeSimone
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Monkol Lek
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
7
|
Millán JM, García-García G. Genetic Testing for Rare Diseases. Diagnostics (Basel) 2022; 12:diagnostics12040809. [PMID: 35453856 PMCID: PMC9028486 DOI: 10.3390/diagnostics12040809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- José M. Millán
- Instituto de Investigación Sanitaria La Fe, Molecular, Cellular and Genomics Biomedicine, 46026 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
- Correspondence:
| | - Gema García-García
- Instituto de Investigación Sanitaria La Fe, Molecular, Cellular and Genomics Biomedicine, 46026 Valencia, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28029 Madrid, Spain
| |
Collapse
|
8
|
Gemelli C, Traverso M, Trevisan L, Fabbri S, Scarsi E, Carlini B, Prada V, Mongini T, Ruggiero L, Patrone S, Gallone S, Iodice R, Pisciotta L, Zara F, Origone P, Rota E, Minetti C, Bruno C, Schenone A, Mandich P, Fiorillo C, Grandis M. An integrated approach to the evaluation of patients with asymptomatic or minimally symptomatic hyperCKemia. Muscle Nerve 2021; 65:96-104. [PMID: 34687219 PMCID: PMC9298868 DOI: 10.1002/mus.27448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 02/01/2023]
Abstract
Introduction/Aims Currently, there are no straightforward guidelines for the clinical and diagnostic management of hyperCKemia, a frequent and nonspecific presentation in muscle diseases. Therefore, we aimed to describe our diagnostic workflow for evaluating patients with this condition. Methods We selected 83 asymptomatic or minimally symptomatic patients with persistent hyperCKemia for participation in this Italian multicenter study. Patients with facial involvement and distal or congenital myopathies were excluded, as were patients with suspected inflammatory myopathies or predominant respiratory or cardiac involvement. All patients underwent a neurological examination and nerve conduction and electromyography studies. The first step of the investigation included a screening for Pompe disease. We then evaluated the patients for myotonic dystrophy type II–related CCTG expansion and excluded patients with copy number variations in the DMD gene. Subsequently, the undiagnosed patients were investigated using a target gene panel that included 20 genes associated with isolated hyperCKemia. Results Using this approach, we established a definitive diagnosis in one third of the patients. The detection rate was higher in patients with severe hyperCKemia and abnormal electromyographic findings. Discussion We have described our diagnostic workflow for isolated hyperCKemia, which is based on electrodiagnostic data, biochemical screening, and first‐line genetic investigations, followed by successive targeted sequencing panels. Both clinical signs and electromyographic abnormalities are associated with increased diagnostic yields.
Collapse
Affiliation(s)
- Chiara Gemelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Genoa, Italy
| | - Monica Traverso
- Paediatric Neurology and Muscular Diseases Unit, IRCCS G. Gaslini Institute, Genoa, Italy
| | - Lucia Trevisan
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Genoa, Italy
| | - Sabrina Fabbri
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Genoa, Italy
| | - Elena Scarsi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Genoa, Italy
| | - Barbara Carlini
- Unit of Medical Genetics, IRCCS G. Gaslini Institute, Genoa, Italy
| | - Valeria Prada
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Genoa, Italy
| | - Tiziana Mongini
- Neuromuscular Unit, Department of Neurosciences Rita Levi Montalcini, University of Torino, Torino, Italy
| | - Lucia Ruggiero
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli "Federico II,", Naples, Italy
| | - Serena Patrone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Genoa, Italy
| | - Salvatore Gallone
- Neurogenetic Service, Department of Neurosciences, AOU Città della salute e della scienza, Torino, Italy
| | - Rosa Iodice
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Università degli Studi di Napoli "Federico II,", Naples, Italy
| | - Livia Pisciotta
- Department of Internal Medicine, University of Genoa, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Unit of Medical Genetics IRCCS G. Gaslini Institute, Genoa, Italy
| | - Paola Origone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Unit of Medical Genetics, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Eugenia Rota
- Neurology Unit, ASL Alessandria, Novi Ligure, Italy
| | - Carlo Minetti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Pediatric Neurology and Muscular Diseases Unit, IRCCS G. Gaslini Institute, Genoa, Italy
| | - Claudio Bruno
- Centre of Experimental and Translational Myology, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Angelo Schenone
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Unit of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Mandich
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Unit of Medical Genetics, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Chiara Fiorillo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Pediatric Neurology and Muscular Diseases Unit, IRCCS G. Gaslini Institute, Genoa, Italy
| | - Marina Grandis
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetic and Maternal and Infantile Sciences, University of Genova, Unit of Neurology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
9
|
Dorado G, Gálvez S, Rosales TE, Vásquez VF, Hernández P. Analyzing Modern Biomolecules: The Revolution of Nucleic-Acid Sequencing - Review. Biomolecules 2021; 11:1111. [PMID: 34439777 PMCID: PMC8393538 DOI: 10.3390/biom11081111] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/12/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Recent developments have revolutionized the study of biomolecules. Among them are molecular markers, amplification and sequencing of nucleic acids. The latter is classified into three generations. The first allows to sequence small DNA fragments. The second one increases throughput, reducing turnaround and pricing, and is therefore more convenient to sequence full genomes and transcriptomes. The third generation is currently pushing technology to its limits, being able to sequence single molecules, without previous amplification, which was previously impossible. Besides, this represents a new revolution, allowing researchers to directly sequence RNA without previous retrotranscription. These technologies are having a significant impact on different areas, such as medicine, agronomy, ecology and biotechnology. Additionally, the study of biomolecules is revealing interesting evolutionary information. That includes deciphering what makes us human, including phenomena like non-coding RNA expansion. All this is redefining the concept of gene and transcript. Basic analyses and applications are now facilitated with new genome editing tools, such as CRISPR. All these developments, in general, and nucleic-acid sequencing, in particular, are opening a new exciting era of biomolecule analyses and applications, including personalized medicine, and diagnosis and prevention of diseases for humans and other animals.
Collapse
Affiliation(s)
- Gabriel Dorado
- Dep. Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, 14071 Córdoba, Spain
| | - Sergio Gálvez
- Dep. Lenguajes y Ciencias de la Computación, Boulevard Louis Pasteur 35, Universidad de Málaga, 29071 Málaga, Spain;
| | - Teresa E. Rosales
- Laboratorio de Arqueobiología, Avda. Universitaria s/n, Universidad Nacional de Trujillo, 13011 Trujillo, Peru;
| | - Víctor F. Vásquez
- Centro de Investigaciones Arqueobiológicas y Paleoecológicas Andinas Arqueobios, Martínez de Companón 430-Bajo 100, Urbanización San Andres, 13088 Trujillo, Peru;
| | - Pilar Hernández
- Instituto de Agricultura Sostenible (IAS), Consejo Superior de Investigaciones Científicas (CSIC), Alameda del Obispo s/n, 14080 Córdoba, Spain;
| |
Collapse
|