1
|
Pruksaphon K, Amsri A, Thammasit P, Nosanchuk JD, Aiumurai P, Youngchim S. Diagnostic Performances of an in-House Immunochromatography Test Based on the Monoclonal Antibody 18B7 to Glucuronoxylomannan for Clinical Suspected Cryptococcosis: a Large-Scale Prototype Evaluation in Northern Thailand. Mycopathologia 2024; 189:75. [PMID: 39120647 PMCID: PMC11517805 DOI: 10.1007/s11046-024-00882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Cryptococcosis predominantly presents as a meningoencephalitis in Thailand. Early and expeditious diagnosis is essential for reducing both mortality and morbidity associated with cryptococcal meningitis. We aim to define and establish the diagnostic performances between the benchmark commercially available diagnostic kit (CrAg® LFA) and the large-scale prototype of an inexpensive in-house immunochromatographic test (ICT) based on monoclonal antibody (MAb) 18B7. METHODS We have developed the large-scale prototype for the rapid detection of cryptococcal polysaccharide antigens by utilizing a single antibody sandwich ICT format employing MAb 18B7, which is highly specific to Cryptococcus neoformans glucuronoxylomannan (GXM) antigens. An in-house MAb18B7 ICT was manufactured in accordance with industry standards under the control of the International Organization for Standardization (ISO) 13485. RESULTS The diagnostic sensitivity, specificity, and accuracy for the in-house MAb 18B7 ICT were 99.10%, 97.61%, and 97.83%, respectively. The agreement kappa (κ) coefficient was 0.968 based on the retrospective evaluation of 580 specimens from patients living in northern Thailand with clinically suspected cryptococcosis. CONCLUSION The data suggest that this in-house MAb 18B7 ICT will be highly beneficial for addressing the issue of cryptococcal infection in Thailand. Moreover, it is anticipated that this inexpensive ICT can play a pivotal role in various global strategies aimed at eradicating cryptococcal meningitis among individuals living with HIV by 2030.
Collapse
Affiliation(s)
- Kritsada Pruksaphon
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand
- Center of Excellence Research for Melioidosis and Microorganisms (CERMM), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Artid Amsri
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Patcharin Thammasit
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Joshua D Nosanchuk
- Department of Medicine (Division of Infectious Diseases), Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Pisinee Aiumurai
- Center of Research Excellence in Allergy and Immunology, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Sirida Youngchim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
2
|
Pruksaphon K, Amsri A, Thammasit P, Nosanchuk JD, Youngchim S. Extracellular vesicles derived from Talaromyces marneffei contain immunogenic compounds and modulate THP-1 macrophage responses. Front Immunol 2023; 14:1192326. [PMID: 37457708 PMCID: PMC10339390 DOI: 10.3389/fimmu.2023.1192326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Pathogenic eukaryotes including fungi release extracellular vesicles (EVs) which are composed of a variety of bioactive components, including peptides, nucleic acids, polysaccharides, and membrane lipids. EVs contain virulence-associated molecules suggesting a crucial role of these structures in disease pathogenesis. EVs derived from the pathogenic yeast phase of Talaromyces (Penicillium) marneffei, a causative agent of systemic opportunistic mycoses "talaromycosis," were studied for their immunogenic components and immunomodulatory properties. Some important virulence factors in EVs including fungal melanin and yeast phase specific mannoprotein were determined by immunoblotting. Furthermore, fluorescence microscopy revealed that T. marneffei EVs were internalized by THP-1 human macrophages. Co-incubation of T. marneffei EVs with THP-1 human macrophages resulted in increased levels of supernatant interleukin (IL)-1β, IL-6 and IL-10. The expression of THP-1 macrophage surface CD86 was significantly increased after exposed to T. marneffei EVs. These findings support the hypothesis that fungal EVs play an important role in macrophage "classical" M1 polarization. T. marneffei EVs preparations also increased phagocytosis, suggesting that EV components stimulate THP-1 macrophages to produce effective antimicrobial compounds. In addition, T. marneffei EVs stimulated THP-1 macrophages were more effective at killing T. marneffei conidia. These results indicate that T. marneffei EVs can potently modulate macrophage functions, resulting in the activation of these innate immune cells to enhance their antimicrobial activity.
Collapse
Affiliation(s)
- Kritsada Pruksaphon
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Artid Amsri
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Patcharin Thammasit
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Joshua D. Nosanchuk
- Department of Medicine (Division of Infectious Diseases) and Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, United States
| | - Sirida Youngchim
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
3
|
Zhao Z, Tian Y, Xu C, Xing Y, Yang L, Qian G, Hua X, Gong W, Hu B, Wang L. A Monoclonal Antibody-Based Immunochromatographic Test Strip and Its Application in the Rapid Detection of Cucumber Green Mottle Mosaic Virus. BIOSENSORS 2023; 13:199. [PMID: 36831965 PMCID: PMC9953337 DOI: 10.3390/bios13020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Two specific monoclonal antibodies (mAbs) were screened, and an immunochromatographic strip (ICS) test for rapid and specific detection of cucumber green mottle mosaic virus (CGMMV) was developed. The coat protein of CGMMV was heterologously expressed as an immunogen, and specific capture mAb 2C9 and the detection mAb 4D4 were screened by an uncompetitive immunoassay. The test and control lines on the nitrocellulose membrane were coated with the purified 2C9 and a goat anti-mouse IgG, respectively, and a nanogold probe combined with 4D4 was applied to the conjugate pad. Using these mAbs, a rapid and sensitive ICS was developed. Within the sandwich mode of 2C9-CGMMV-4D4, the test line showed a corresponding positive relationship with CGMMV in infected samples. The ICS test had a detection limit of 1:5000 (w/v) for CGMMV in samples and was specific for CGMMV, with no observed cross-reaction with TMV or CMV.
Collapse
Affiliation(s)
- Zichen Zhao
- Department of Phytopathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanli Tian
- Department of Phytopathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Xu
- Department of Phytopathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanfei Xing
- Department of Phytopathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Lili Yang
- Department of Phytopathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoliang Qian
- Department of Phytopathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiude Hua
- Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Weirong Gong
- Plant Protection and Quarantine Station of Jiangsu Province, Nanjing 210036, China
| | - Baishi Hu
- Department of Phytopathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Limin Wang
- Department of Phytopathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Expression of Cytokine Profiles in Human THP-1 Cells during Phase Transition of Talaromyces marneffei. Pathogens 2022; 11:pathogens11121465. [PMID: 36558799 PMCID: PMC9783046 DOI: 10.3390/pathogens11121465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Talaromyces marneffei, a dimorphic fungus, exhibits temperature-dependent growth, existing in a filamentous form at 25 °C and as a yeast at 37 °C. Several studies have highlighted the important roles of macrophages in defense against T. marneffei infection. However, the immune responses to the interaction of macrophages with T. marneffei cells during phase transition require further investigation. This study reports the expression of cytokine profiles in human THP-1 cells during infection by T. marneffei. THP-1 cells were infected with T. marneffei conidia at different multiplicity of infections (MOIs). Surviving conidia transformed into yeasts after phagocytosis by macrophages, and the number of yeasts gradually increased over 36 h. The transcription and secretion levels of pro- and anti-inflammatory cytokines were examined at different times by qRT-PCR and ELISA. Transcription levels of IL-8, IL-12, IL-1β, and TNF-α increased significantly at 12 or 24 h and then slightly decreased at 36 h. In contrast, the transcription levels of IL-6, IL-10, and TGF-β gradually increased at all MOIs. The levels of IL-6 and IL-10 secretion corresponded to their levels of transcription. These results indicated that as the number of intracellular yeasts increased, the infected macrophages first underwent slight M1 polarization before shifting to M2 polarization. This polarization transition was confirmed by the fungicidal ability and the expression of macrophage surface markers. By inducing the M2-type polarization of macrophages, the intracellular T. marneffei cells can successfully evade the immune response. Our study provides a novel insight into the immune characterization during the transition of T. marneffei infection and could further contribute to possible diagnostic and therapeutic interventions for this infection.
Collapse
|
5
|
Almeida-Paes R, Bernardes-Engemann AR, da Silva Motta B, Pizzini CV, de Abreu Almeida M, de Medeiros Muniz M, Dias RAB, Zancopé-Oliveira RM. Immunologic Diagnosis of Endemic Mycoses. J Fungi (Basel) 2022; 8:jof8100993. [PMID: 36294558 PMCID: PMC9605100 DOI: 10.3390/jof8100993] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/02/2022] Open
Abstract
The endemic mycoses blastomycosis, coccidioidomycosis, histoplasmosis, paracoccidioidomycosis, cryptococcosis, sporotrichosis, talaromycosis, adiaspiromycosis, and emergomycosis are mostly caused by geographically limited thermally dimorphic fungi (except for cryptococcosis), and their diagnoses can be challenging. Usual laboratory methods involved in endemic mycoses diagnosis include microscopic examination and culture of biological samples; however, serologic, histopathologic, and molecular techniques have been implemented in the last few years for the diagnosis of these mycoses since the recovery and identification of their etiologic agents is time-consuming and lacks in sensitivity. In this review, we focus on the immunologic diagnostic methods related to antibody and antigen detection since their evidence is presumptive diagnosis, and in some mycoses, such as cryptococcosis, it is definitive diagnosis.
Collapse
|
6
|
Hu Q, Li X, Zhou X, Zhao C, Zheng C, Xu L, Zhou Z. Clinical utility of cryptococcal antigen detection in transthoracic needle aspirate by lateral flow assay for diagnosing non-HIV pulmonary cryptococcosis: A multicenter retrospective study. Medicine (Baltimore) 2022; 101:e30572. [PMID: 36123876 PMCID: PMC9478314 DOI: 10.1097/md.0000000000030572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Lateral flow immunoassay (LFA) detection of cryptococcal capsular polysaccharide antigen (CrAg) is reported to be the most rapid and convenient laboratory method for diagnosing cryptococcosis. Its clinical diagnostic use, however, is not well studied. We retrospectively analyzed the data from 97 patients with suspected pulmonary cryptococcosis (PC) at 2 tertiary care centers. CrAg in both serum and lung aspirate specimens were examined by LFA. We divided the patients who were diagnosed with PC into group I, patients positive for CrAg in both the serum and lung aspirate, and group II, patients positive for CrAg in the lung aspirate but not in the serum. We analyzed the differences in imaging distribution, morphological characteristics, and concomitant signs between the 2 groups. Of all 97 patients, 47 were diagnosed with PC. Lung aspirates were positive for CrAg in 46/47 patients with PC (sensitivity 97.9%, specificity 100%, positive predictive value = 100%, negative predictive value = 98%). There were no false positive results in the noncryptococcosis patients, revealing a diagnostic accuracy of 99%. Serum CrAg tests were positive in 36/47 patients with PC (sensitivity 76.6%, specificity 100%, accuracy 88.7%, positive predictive value = 100%, negative predictive value = 82%). Chest imaging data showed a statistically significant greater number of single lesions in group II than in group I (P < .05). More lesions accompanied by halo signs were showed in group I (P < .01), whereas more accompanied by pleural stretch signs were found in group II (P < .01). The LFA-positive rate of CrAg in lung aspirate samples was higher than that of the serum samples, especially in patients with single pulmonary lesion or in those accompanied by pleural stretch. The direct measurement of CrAg in lung aspirate is a rapid, useful alternative diagnostic method for PC confirmation.
Collapse
Affiliation(s)
- Qun Hu
- Department of Pulmonary and Critical Care Medicine, South China Hospital of Shenzhen University, Shenzhen, China
| | - Xiaohua Li
- Department of Pulmonary and Critical Care Medicine, Fuzhou first hospital, Fujian Medical University, Fuzhou, China
| | - Xiao Zhou
- Department of Pulmonary and Critical Care Medicine, Fuzhou General Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Chunlei Zhao
- Medical Imaging Center, Fuzhou General Clinical Medical College, Fujian Medical University, Fuzhou, China
| | - Caixia Zheng
- Department of imaging Medicine, Fuzhou First Hospital, Fujian Medical University, Fuzhou, China
| | - Liyu Xu
- Department of Pulmonary and Critical Care Medicine, Fuzhou first hospital, Fujian Medical University, Fuzhou, China
- *Correspondence: Liyu Xu, MD, PhD, Department of Pulmonary and Critical Care Medicine, Fuzhou City First Hospital, Fujian Medical University, Fuzhou 350009, China (e-mail: ); Zizi Zhou, MD, Department of Cardiothoracic Surgery, Shenzhen University General Hospital, Shenzhen, 518055, China (e-mail: )
| | - Zizi Zhou
- Department of Cardiothoracic Surgery, Shenzhen University General Hospital, Shenzhen, China
- *Correspondence: Liyu Xu, MD, PhD, Department of Pulmonary and Critical Care Medicine, Fuzhou City First Hospital, Fujian Medical University, Fuzhou 350009, China (e-mail: ); Zizi Zhou, MD, Department of Cardiothoracic Surgery, Shenzhen University General Hospital, Shenzhen, 518055, China (e-mail: )
| |
Collapse
|