1
|
Murthy MC, Banerjee B, Shetty M, Mariappan M, Sekhsaria A. A retrospective study of the yield of next-generation sequencing in the diagnosis of developmental and epileptic encephalopathies and epileptic encephalopathies in 0-12 years aged children at a single tertiary care hospital in South India. Epileptic Disord 2024; 26:609-625. [PMID: 38923778 DOI: 10.1002/epd2.20254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE Studies on the genetic yield of developmental and epileptic encephalopathy and Epileptic encephalopathies using next-generation sequencing techniques are sparse from the Indian subcontinent. Hence, the study was conducted to assess the yield of genetic testing and the proportion of children where a positive genetic yield influenced treatment decisions. METHODS In this retrospective observational study, electronic medical records of children (0-12 years) with suspected genetic epilepsy who underwent genetic testing using whole exome sequencing, focused exome sequencing and epilepsy gene panels were retrieved. Genetic yield was ascertained based on the detection of pathogenic and likely pathogenic variants. RESULTS A total of 100 patients with epilepsy underwent genetic testing. A yield of 53.8% (42/78) was obtained. Pathogenic variants were identified in 18 (42.8%) cases and likely pathogenic variants in 24 (57.1%) cases. Yield was 66.6% each through whole exome sequencing, focused exome sequencing and 40% through Epilepsy gene panels (p = .07). Yield was not statistically significant across different age groups (p = .2). It was however found to significantly vary across different epilepsy syndromes with maximum yield in Epilepsy in infancy with migrating focal seizures in 2 (100%), followed by developmental and epileptic encephalopathy unspecified in 14 (77.7%), Dravet syndrome in 14 (60.8%), early infantile developmental and epileptic encephalopathy in 3 (60%), infantile epileptic spasm syndrome in 5 (35.7%), and other epileptic encephalopathies in 4 (30.7%) cases (p = .04). After genetic diagnosis and drug optimization, drug-refractory proportion reduced from 73.8% to 45.3%. About half of the cases achieved seizure control. SIGNIFICANCE A reasonably high yield of 53.8% was obtained irrespective of the choice of panel or exome or age group using next-generation sequencing-based techniques. Yield was however higher in certain epilepsy syndromes and low in Infantile epileptic spasms syndrome. A specific genetic diagnosis facilitated tailored treatment leading to seizure freedom in 28.6% and marked seizure reduction in 54.7% cases.
Collapse
Affiliation(s)
- Manasa C Murthy
- Division of Pediatric Neurology, Department of Pediatrics, Manipal Hospital, Bengaluru, India
| | - Bidisha Banerjee
- Division of Pediatric Neurology, Department of Pediatrics, Manipal Hospital, Bengaluru, India
| | - Mitesh Shetty
- Department of Medical Genetics, Manipal Hospital, Bengaluru, India
| | | | | |
Collapse
|
2
|
Fazenbaker AC, Munro CD, Carlson JC, Durst AL, Vento JM. Epilepsy panel testing criteria: A clinical assessment. J Genet Couns 2024; 33:352-360. [PMID: 37246482 DOI: 10.1002/jgc4.1732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 05/30/2023]
Abstract
Epilepsy is a common, and often genetic, neurological disorder. Few guidelines exist to help medical providers or insurance companies decide when to order or cover epilepsy panels for patients with epilepsy. The most recent guidelines were published by NSGC after this study's data collection. Since 2017, the Genetic Testing Stewardship Program (GTSP) at UPMC Children's Hospital of Pittsburgh (CHP) has been utilizing a set of internally developed epilepsy panel (EP) testing criteria to facilitate appropriate EP ordering practices. The purpose of this study was to assess these testing criteria by determining their sensitivities and positive predictive values (PPV). Retrospective chart review of the electronic medical record (EMR) was performed for 1242 CHP Neurology patients that were evaluated for a primary diagnosis of epilepsy between 2016 and 2018. One hundred and nine patients had EPs at various testing laboratories. Of the patients that met criteria, 17 had diagnostic EPs and 54 had negative EPs. Criteria were organized into category groupings (C1-C4), and analyzed alone for C1, in pairs for C2, etc. The highest sensitivity and PPV results in each category grouping were: C1 (64.7%, 60%); C2, (88%, 30.3%); C3, (94.1%, 27.1%); C4, (94.1%, 25.4%). Family history was crucial to increasing sensitivity. Confidence intervals (CIs) narrowed as category grouping level increased, though this was not statistically significant due to the considerable CI overlap across category groupings. The PPV from C4 was applied to the untested population cohort and predicted 121 patients with unidentified positive EPs. This study presents data supporting the predictive capabilities of EP testing criteria and suggests the addition of a family history criterion. This study impacts public health by encouraging the adoption of evidence-driven insurance policies and by suggesting guidelines to ease EP ordering and coverage decisions, which could potentially improve patient access to EP testing.
Collapse
Affiliation(s)
- Andrew C Fazenbaker
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
- Phoenix Children's Hospital, Division of Genetics and Metabolism, Phoenix, Arizona, USA
| | - Christine D Munro
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Jenna C Carlson
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrea L Durst
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Jodie M Vento
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Snyder HE, Jain P, RamachandranNair R, Jones KC, Whitney R. Genetic Advancements in Infantile Epileptic Spasms Syndrome and Opportunities for Precision Medicine. Genes (Basel) 2024; 15:266. [PMID: 38540325 PMCID: PMC10970414 DOI: 10.3390/genes15030266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/13/2024] [Accepted: 02/20/2024] [Indexed: 06/15/2024] Open
Abstract
Infantile epileptic spasms syndrome (IESS) is a devastating developmental epileptic encephalopathy (DEE) consisting of epileptic spasms, as well as one or both of developmental regression or stagnation and hypsarrhythmia on EEG. A myriad of aetiologies are associated with the development of IESS; broadly, 60% of cases are thought to be structural, metabolic or infectious in nature, with the remainder genetic or of unknown cause. Epilepsy genetics is a growing field, and over 28 copy number variants and 70 single gene pathogenic variants related to IESS have been discovered to date. While not exhaustive, some of the most commonly reported genetic aetiologies include trisomy 21 and pathogenic variants in genes such as TSC1, TSC2, CDKL5, ARX, KCNQ2, STXBP1 and SCN2A. Understanding the genetic mechanisms of IESS may provide the opportunity to better discern IESS pathophysiology and improve treatments for this condition. This narrative review presents an overview of our current understanding of IESS genetics, with an emphasis on animal models of IESS pathogenesis, the spectrum of genetic aetiologies of IESS (i.e., chromosomal disorders, single-gene disorders, trinucleotide repeat disorders and mitochondrial disorders), as well as available genetic testing methods and their respective diagnostic yields. Future opportunities as they relate to precision medicine and epilepsy genetics in the treatment of IESS are also explored.
Collapse
Affiliation(s)
- Hannah E. Snyder
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| | - Puneet Jain
- Division of Neurology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON M5G 1E8, Canada
| | - Rajesh RamachandranNair
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| | - Kevin C. Jones
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| | - Robyn Whitney
- Division of Neurology, Department of Paediatrics, McMaster University, Hamilton, ON L8N 3Z5, Canada (R.R.)
| |
Collapse
|
4
|
Grether A, Ivanovski I, Russo M, Begemann A, Steindl K, Abela L, Papik M, Zweier M, Oneda B, Joset P, Rauch A. The current benefit of genome sequencing compared to exome sequencing in patients with developmental or epileptic encephalopathies. Mol Genet Genomic Med 2023; 11:e2148. [PMID: 36785910 PMCID: PMC10178799 DOI: 10.1002/mgg3.2148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND As the technology of next generation sequencing rapidly develops and costs are constantly reduced, the clinical availability of whole genome sequencing (WGS) increases. Thereby, it remains unclear what exact advantage WGS offers in comparison to whole exome sequencing (WES) for the diagnosis of genetic diseases using current technologies. METHODS Trio-WGS was conducted for 20 patients with developmental or epileptic encephalopathies who remained undiagnosed after WES and chromosomal microarray analysis. RESULTS A diagnosis was reached for four patients (20%). However, retrospectively all pathogenic variants could have been detected in a WES analysis conducted with today's methods and knowledge. CONCLUSION The additional diagnostic yield of WGS versus WES is currently largely explained by new scientific insights and the general technological progress. Nevertheless, it is noteworthy that whole genome sequencing has greater potential for the analysis of small copy number and copy number neutral variants not seen with WES as well as variants in noncoding regions, especially as potentially more knowledge of the function of noncoding regions arises. We, therefore, conclude that even though today the added value of WGS versus WES seems to be limited, it may increase substantially in the future.
Collapse
Affiliation(s)
- Anna Grether
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
| | - Ivan Ivanovski
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
| | - Martina Russo
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
| | - Anaïs Begemann
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
| | | | - Lucia Abela
- Division of Child NeurologyUniversity Children's Hospital ZurichZurichSwitzerland
| | - Michael Papik
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
| | - Markus Zweier
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
| | - Beatrice Oneda
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
| | - Pascal Joset
- Medical Genetics, Institute of Medical Genetics and PathologyUniversity Hospital BaselBaselSwitzerland
| | - Anita Rauch
- Institute of Medical GeneticsUniversity of ZurichZurichSwitzerland
- University Children's Hospital ZurichZurichSwitzerland
- University of Zurich Clinical Research Priority Program (CRPP) Praeclare – Personalized prenatal and reproductive medicineZurichSwitzerland
- University of Zurich Research Priority Program (URPP) AdaBD: Adaptive Brain Circuits in Development and LearningZurichSwitzerland
- University of Zurich Research Priority Program (URPP) ITINERARE: Innovative Therapies in Rare DiseasesZurichSwitzerland
| |
Collapse
|
5
|
Pranav Chand R, Vinit W, Vaidya V, Iyer AS, Shelke M, Aggarwal S, Magar S, Danda S, Moirangthem A, Phadke SR, Goyal M, Ranganath P, Mistri M, Shah P, Shah N, Kotecha UH. Proband only exome sequencing in 403 Indian children with neurodevelopmental disorders: Diagnostic yield, utility and challenges in a resource-limited setting. Eur J Med Genet 2023; 66:104730. [PMID: 36801247 DOI: 10.1016/j.ejmg.2023.104730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023]
Abstract
Whole exome sequencing is recommended as the first tier test for neurodevelopmental disorders (NDDs) with trio being an ideal option for the detection of de novo variants. Cost constraints have led to adoption of sequential testing i.e. proband-only whole exome followed by targeted testing of parents. The reported diagnostic yield for proband exome approach ranges between 31 and 53%. Typically, these study designs have aptly incorporated targeted parental segregation before concluding a genetic diagnosis to be confirmed. The reported estimates however do not accurately reflect the yield of proband only standalone whole -exome, a question commonly posed to the referring clinician in self pay medical systems like India. To assess the utility of standalone proband exome (without follow up targeted parental testing), we retrospectively evaluated 403 cases of neurodevelopmental disorders referred for proband-only whole exome sequencing at Neuberg Centre for Genomic Medicine (NCGM), Ahmedabad during the period of January 2019 and December 2021. A diagnosis was considered confirmed only upon the detection of Pathogenic/Likely Pathogenic variants in concordance with patient's phenotype as well as established inheritance pattern. Targeted parental/familial segregation analysis was recommended as a follow up test where applicable. The diagnostic yield of the proband-only standalone whole exome was 31.5%. Only 20 families submitted samples for follow up targeted testing, and a genetic diagnosis was confirmed in twelve cases increasing the yield to 34.5%. To understand factors leading to poor uptake of sequential parental testing, we focused on cases where an ultra-rare variant was detected in hitherto described de novo dominant neurodevelopmental disorder. A total of 40 novel variants in genes associated with de novo autosomal dominant disorders could not be reclassified as parental segregation was denied. Semi-structured telephonic interviews were conducted upon informed consent to comprehend reasons for denial. Major factors influencing decision making included lack of definitive cure in the detected disorders; especially when couples not planning further conception and financial constraints to fund further targeted testing. Our study thus depicts the utility and challenges of proband-only exome approach and highlights the need for larger studies to understand factors influencing decision making in sequential testing.
Collapse
Affiliation(s)
| | - Wankhede Vinit
- Kids Neuro Clinic and Child Rehabilitation Center, Nagpur, Maharashtra, India
| | - Varsha Vaidya
- Kpond Children Super Specialty Hospital, Aurangabad, Maharashtra, India
| | | | - Madhavi Shelke
- Integrated Centre for Child Neurodevelopment, Aurangabad, Maharashtra, India
| | | | - Suvarna Magar
- MGM Medical College and Hospitals, Aurangabad, India
| | - Sumita Danda
- Christian Medical College and Hospital, Vellore, India
| | - Amita Moirangthem
- Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | | | | | - Mehul Mistri
- Neuberg Centre for Genomic Medicine, Ahmedabad, 380059, Gujarat, India
| | - Parth Shah
- Neuberg Centre for Genomic Medicine, Ahmedabad, 380059, Gujarat, India
| | - Nidhi Shah
- Neuberg Centre for Genomic Medicine, Ahmedabad, 380059, Gujarat, India
| | | |
Collapse
|
6
|
Kochetkova TO, Maslennikov DN, Tolmacheva ER, Shubina J, Bolshakova AS, Suvorova DI, Degtyareva AV, Orlovskaya IV, Kuznetsova MV, Rachkova AA, Sukhikh GT, Rebrikov DV, Trofimov DY. De Novo Variant in the KCNJ9 Gene as a Possible Cause of Neonatal Seizures. Genes (Basel) 2023; 14:genes14020366. [PMID: 36833293 PMCID: PMC9956824 DOI: 10.3390/genes14020366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The reduction in next-generation sequencing (NGS) costs allows for using this method for newborn screening for monogenic diseases (MDs). In this report, we describe a clinical case of a newborn participating in the EXAMEN project (ClinicalTrials.gov Identifier: NCT05325749). METHODS The child presented with convulsive syndrome on the third day of life. Generalized convulsive seizures were accompanied by electroencephalographic patterns corresponding to epileptiform activity. Proband WES expanded to trio sequencing was performed. RESULTS A differential diagnosis was made between symptomatic (dysmetabolic, structural, infectious) neonatal seizures and benign neonatal seizures. There were no data in favor of the dysmetabolic, structural, or infectious nature of seizures. Molecular karyotyping and whole exome sequencing were not informative. Trio WES revealed a de novo variant in the KCNJ9 gene (1:160087612T > C, p.Phe326Ser, NM_004983), for which, according to the OMIM database, no association with the disease has been described to date. Three-dimensional modeling was used to predict the structure of the KCNJ9 protein using the known structure of its homologs. According to the predictions, Phe326Ser change possibly disrupts the hydrophobic contacts with the valine side chain. Destabilization of the neighboring structures may undermine the formation of GIRK2/GIRK3 tetramers necessary for their proper functioning. CONCLUSIONS We believe that the identified variant may be the cause of the disease in this patient but further studies, including the search for other patients with the KCNJ9 variants, are needed.
Collapse
|
7
|
Smith L, Malinowski J, Ceulemans S, Peck K, Walton N, Sheidley BR, Lippa N. Genetic testing and counseling for the unexplained epilepsies: An evidence‐based practice guideline of the National Society of Genetic Counselors. J Genet Couns 2022; 32:266-280. [PMID: 36281494 DOI: 10.1002/jgc4.1646] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/10/2022]
Abstract
Epilepsy, defined by the occurrence of two or more unprovoked seizures or one unprovoked seizure with a propensity for others, affects 0.64% of the population and can lead to significant morbidity and mortality. A majority of unexplained epilepsy (seizures not attributed to an acquired etiology, such as trauma or infection) is estimated to have an underlying genetic etiology. Despite rapid progress in understanding of the genetic underpinnings of the epilepsies, there are no recent evidence-based guidelines for genetic testing and counseling for this population. This practice guideline provides evidence-based recommendations for approaching genetic testing in the epilepsies using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) Evidence to Decision framework. We used evidence from a recent systematic evidence review and meta-analysis of diagnostic yield of genetic tests in patients with epilepsy. We also compiled data from other sources, including recently submitted conference abstracts and peer-reviewed journal articles. We identified and prioritized outcomes of genetic testing as critical, important or not important and based our recommendations on outcomes deemed critical and important. We considered the desirable and undesirable effects, value and acceptability to relevant stakeholders, impact on health equity, cost-effectiveness, certainty of evidence, and feasibility of the interventions in individuals with epilepsy. Taken together, we generated two clinical recommendations: (1) Genetic testing is strongly recommended for all individuals with unexplained epilepsy, without limitation of age, with exome/genome sequencing and/or a multi-gene panel (>25 genes) as first-tier testing followed by chromosomal microarray, with exome/genome sequencing conditionally recommended over multi-gene panel. (2) It is strongly recommended that genetic tests be selected, ordered, and interpreted by a qualified healthcare provider in the setting of appropriate pre-test and post-test genetic counseling. Incorporation of genetic counselors into neurology practices and/or referral to genetics specialists are both useful models for supporting providers without genetics expertise to implement these recommendations.
Collapse
Affiliation(s)
- Lacey Smith
- Epilepsy Genetics Program, Department of Neurology Boston Children's Hospital Boston Massachusetts USA
| | | | - Sophia Ceulemans
- Department of Genetics, Department of Neurology Rady Children's Hospital San Diego California USA
| | - Katlin Peck
- Department of Laboratory Management eviCore Healthcare Bluffton South Carolina USA
| | - Nephi Walton
- Intermountain Precision Genomics Intermountain Healthcare St. George Utah USA
| | - Beth Rosen Sheidley
- Epilepsy Genetics Program, Department of Neurology Boston Children's Hospital Boston Massachusetts USA
| | - Natalie Lippa
- Instititute for Genomic Medicine Columbia University Irving Medical Center New York New York USA
| |
Collapse
|