1
|
Chen X, Zhao W, Yu H, Wang S, Wang C, Song Y, Meng X, Li J. Case report: a case of lung squamous cell carcinoma with a novel FGFR3-IER5L fusion mutation responding to anlotinib. Front Oncol 2024; 14:1391349. [PMID: 39421453 PMCID: PMC11484447 DOI: 10.3389/fonc.2024.1391349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/26/2024] [Indexed: 10/19/2024] Open
Abstract
Lung squamous cell carcinoma (LUSC) is the second most common pathological type of non-small cell lung cancer (NSCLC). However, compared with lung adenocarcinoma (LUAD), the incidence of driver gene mutations in LUSC is relatively lower and treatment options for LUSC patients are very limited. We described a LUSC patient with a novel FGFR3-IER5L fusion revealed by next generation sequencing in this report. The patient refused surgery, radiotherapy or chemotherapy and received anlotinib treatment. Anlotinib is a small molecular multi-target tyrosine kinase inhibitor, which can inhibit the activity of kinases including vascular endothelial growth factor receptor 2/3 (VEGFR2/3), fibroblast growth factor receptor 1-4 (FGFR1-4), platelet-derived growth factor receptor α/β (PDGFRα/β), and c-Kit. The patient achieved partial response and the progression-free survival was 3.8 months.
Collapse
Affiliation(s)
- Xiaoting Chen
- Department of Oncology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong, China
| | - Wen Zhao
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hejiang Yu
- Department of Oncology, Yunyang County People’s Hospital, Chongqing, China
| | - Shuang Wang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chengjun Wang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanan Song
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xue Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jisheng Li
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Khalatyan AS, Shishparenok AN, Avetisov KS, Gladilina YA, Blinova VG, Zhdanov DD. Association of Telomere Length in T Lymphocytes, B Lymphocytes, NK Cells and Monocytes with Different Forms of Age-Related Macular Degeneration. Biomedicines 2024; 12:1893. [PMID: 39200358 PMCID: PMC11351114 DOI: 10.3390/biomedicines12081893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 09/02/2024] Open
Abstract
BACKGROUND Age plays a primary role in the development of age-related macular degeneration (AMD). Telomere length (TL) is one of the most relevant biomarkers of aging. In our study, we aimed to determine the association of TL with T lymphocytes, B lymphocytes, NK cells or monocytes with different forms of AMD. METHODS Our study included 62 patients with AMD: geographic atrophy (GA), neovascular AMD (NVAMD) with and without macular atrophy and 22 healthy controls. Each leukocyte subtype was isolated from peripheral blood by immunomagnetic separation, and the DNA was purified. The TL in the genomic DNA was determined using qPCR by amplifying the telomere region with specific oligonucleotide primers and normalizing to the control gene. Statistical analysis was performed using R version 4.5.1. RESULTS We observed a statistically significant increase in TL in the T cells between the control and NVAMD groups but not for the GA group. The B cells and monocytes showed a significant decrease in TL in all AMD groups. The TL in the NK cells did not decrease in any of the AMD groups. CONCLUSIONS The TL in the monocytes had the strongest association with AMD. It reflects a person's "telomeric status" and may become a diagnostic hallmark of these degenerative processes.
Collapse
Affiliation(s)
- Anait S. Khalatyan
- Krasnov Research Institute of Eye Diseases, 11A, B, Rossolimo Str., Moscow 119021, Russia;
| | - Anastasiya N. Shishparenok
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., Moscow 119121, Russia; (A.N.S.); (Y.A.G.); (V.G.B.); (D.D.Z.)
| | - Konstantin S. Avetisov
- Krasnov Research Institute of Eye Diseases, 11A, B, Rossolimo Str., Moscow 119021, Russia;
| | - Yulia A. Gladilina
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., Moscow 119121, Russia; (A.N.S.); (Y.A.G.); (V.G.B.); (D.D.Z.)
| | - Varvara G. Blinova
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., Moscow 119121, Russia; (A.N.S.); (Y.A.G.); (V.G.B.); (D.D.Z.)
| | - Dmitry D. Zhdanov
- Laboratory of Medical Biotechnology, Institute of Biomedical Chemistry, 10/8 Pogodinskaya St., Moscow 119121, Russia; (A.N.S.); (Y.A.G.); (V.G.B.); (D.D.Z.)
| |
Collapse
|
3
|
Luo Y, Liu J, Feng W, Lin D, Chen M, Zheng H. Single-cell RNA Sequencing Identifies Natural Kill Cell-Related Transcription Factors Associated With Age-Related Macular Degeneration. Evol Bioinform Online 2024; 20:11769343241272413. [PMID: 39149137 PMCID: PMC11325330 DOI: 10.1177/11769343241272413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Background Age-related Macular Degeneration (AMD) poses a growing global health concern as the leading cause of central vision loss in elderly people. Objection This study focuses on unraveling the intricate involvement of Natural Killer (NK) cells in AMD, shedding light on their immune responses and cytokine regulatory roles. Methods Transcriptomic data from the Gene Expression Omnibus database were utilized, employing single-cell RNA-seq analysis. High-dimensional weighted gene co-expression network analysis (hdWGCNA) and single-cell regulatory network inference and clustering (SCENIC) analysis were applied to reveal the regulatory mechanisms of NK cells in early-stage AMD patients. Machine learning models, such as random forests and decision trees, were employed to screen hub genes and key transcription factors (TFs) associated with AMD. Results Distinct cell clusters were identified in the present study, especially the T/NK cluster, with a notable increase in NK cell abundance observed in AMD. Cell-cell communication analyses revealed altered interactions, particularly in NK cells, indicating their potential role in AMD pathogenesis. HdWGCNA highlighted the turquoise module, enriched in inflammation-related pathways, as significantly associated with AMD in NK cells. The SCENIC analysis identified key TFs in NK cell regulatory networks. The integration of hub genes and TFs identified CREM, FOXP1, IRF1, NFKB2, and USF2 as potential predictors for AMD through machine learning. Conclusion This comprehensive approach enhances our understanding of NK cell dynamics, signaling alterations, and potential predictive models for AMD. The identified TFs provide new avenues for molecular interventions and highlight the intricate relationship between NK cells and AMD pathogenesis. Overall, this study contributes valuable insights for advancing our understanding and management of AMD.
Collapse
Affiliation(s)
- Yili Luo
- Department of Ophthalmology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianpeng Liu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wangqiang Feng
- Department of Ophthalmology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Da Lin
- Department of Ophthalmology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mengji Chen
- Department of Ophthalmology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haihua Zheng
- Department of Ophthalmology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Li C, Zhou L, Sun H, Yang MM. Age-Related Macular Degeneration: A Disease of Cellular Senescence and Dysregulated Immune Homeostasis. Clin Interv Aging 2024; 19:939-951. [PMID: 38807637 PMCID: PMC11130992 DOI: 10.2147/cia.s463297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024] Open
Abstract
Age-related macular degeneration (AMD) is a degenerative ocular disease primarily affecting central vision in the elderly. Its pathogenesis is complex, involving cellular senescence and immune homeostasis dysregulation. This review investigates the interaction between these two critical biological processes in AMD pathogenesis and their impact on disease progression. Initially, cellular senescence is analyzed, with particular emphasis on retinal damage induced by senescent retinal pigment epithelial cells. Subsequently, the occurrence of immune homeostasis dysregulation within the retina and its mechanistic role in AMD areis explored. Furthermore, the paper also discusses in detail the interplay between cellular senescence and immune responses, forming a vicious cycle that exacerbates retinal damage and may influence treatment outcomes. In summary, a deeper understanding of the interrelation between cellular senescence and immune dysregulation is vital for the developing innovative therapeutic strategies for AMD.
Collapse
Affiliation(s)
- Cunzi Li
- The Second Clinical Medical College of Jinan University (Shenzhen People’s Hospital), Shenzhen, 518020, People’s Republic of China
| | - Lan Zhou
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, People’s Republic of China
- Post-Doctoral Scientific Research Station of Basic Medicine, Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Hongyan Sun
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, People’s Republic of China
| | - Ming Ming Yang
- Department of Ophthalmology, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, People’s Republic of China
| |
Collapse
|
5
|
Chen J, Zhao L, Zhang L, Luo Y, Jiang Y, H P. The identification of signature genes and their relationship with immune cell infiltration in age-related macular degeneration. Mol Biol Rep 2024; 51:339. [PMID: 38393419 DOI: 10.1007/s11033-023-08969-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/26/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a prevalent source of visual impairment among the elderly population, and its incidence has risen in tandem with the increasing longevity of humans. Despite the progress made with anti-VEGF therapy, clinical outcomes have proven to be unsatisfactory. METHOD We obtained differentially expressed genes (DEGs) of AMD patients and healthy controls from the GEO database. GO and KEGG analyses were used to enrich the DEGs. Weighted gene coexpression network analysis (WGCNA) was used to identify modules related to AMD. SVM, random forest, and least absolute shrinkage and selection operator (LASSO) were employed to screen hub genes. Gene set enrichment analysis (GSEA) was used to explore the pathways in which these hub genes were enriched. CIBERSORT was utilized to analyze the relationship between the hub genes and immune cell infiltration. Finally, Western blotting and RT‒PCR were used to explore the expression of hub genes in AMD mice. RESULTS We screened 1084 DEGs in GSE29801, of which 496 genes were upregulated. These 1084 DEGs were introduced into the WGCNA, and 94 genes related to AMD were obtained. Seventy-nine overlapping genes were obtained by the Venn plot. These 79 genes were introduced into three machine-learning methods to screen the hub genes, and the genes identified by the three methods were TNC, FAP, SREBF1, and TGF-β2. We verified their diagnostic function in the GSE29801 and GSE103060 datasets. Then, the hub gene co-enrichment pathways were obtained by GO and KEGG analyses. CIBERSORT analysis showed that these hub genes were associated with immune cell infiltration. Finally, we found increased expression of TNC, FAP, SREBF1, and TGF-β2 mRNA and protein in the retinas of AMD mice. CONCLUSION We found that four hub genes, namely, FAP, TGF-β2, SREBF1, and TNC, have diagnostic significance in patients with AMD and are related to immune cell infiltration. Finally, we determined that the mRNA and protein expression of these hub genes was upregulated in the retinas of AMD mice.
Collapse
Affiliation(s)
- Jinquan Chen
- Department of Ophthalmology, The Tongnan District People's Hospital, Chongqing, China
| | - Long Zhao
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Longbin Zhang
- Department of Ophthalmology, The Tongnan District People's Hospital, Chongqing, China
| | - Yiling Luo
- Department of Ophthalmology, The Tongnan District People's Hospital, Chongqing, China
| | - Yuling Jiang
- Department of Ophthalmology, The Tongnan District People's Hospital, Chongqing, China
| | - Peng H
- Department of Ophthalmology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
6
|
Khan AH, Chowers I, Lotery AJ. Beyond the Complement Cascade: Insights into Systemic Immunosenescence and Inflammaging in Age-Related Macular Degeneration and Current Barriers to Treatment. Cells 2023; 12:1708. [PMID: 37443742 PMCID: PMC10340338 DOI: 10.3390/cells12131708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Landmark genetic studies have revealed the effect of complement biology and its regulation on the pathogenesis of age-related macular degeneration (AMD). Limited phase 3 clinical trial data showing a benefit of complement inhibition in AMD raises the prospect of more complex mediators at play. Substantial evidence supports the role of para-inflammation in maintaining homeostasis in the retina and choroid. With increasing age, a decline in immune system regulation, known as immunosenescence, has been shown to alter the equilibrium maintained by para-inflammation. The altered equilibrium results in chronic, sterile inflammation with aging, termed 'inflammaging', including in the retina and choroid. The chronic inflammatory state in AMD is complex, with contributions from cells of the innate and adaptive branches of the immune system, sometimes with overlapping features, and the interaction of their secretory products with retinal cells such as microglia and retinal pigment epithelium (RPE), extracellular matrix and choroidal vascular endothelial cells. In this review, the chronic inflammatory state in AMD will be explored by immune cell type, with a discussion of factors that will need to be overcome in the development of curative therapies.
Collapse
Affiliation(s)
- Adnan H. Khan
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Itay Chowers
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91121, Israel
| | - Andrew J. Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
- Southampton Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| |
Collapse
|
7
|
Ascunce K, Dhodapkar RM, Huang D, Hafler BP. Innate immune biology in age-related macular degeneration. Front Cell Dev Biol 2023; 11:1118524. [PMID: 36926522 PMCID: PMC10011475 DOI: 10.3389/fcell.2023.1118524] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
Age-related macular degeneration (AMD) is a neurodegenerative disease and a leading cause of irreversible vision loss in the developed world. While not classically described as an inflammatory disease, a growing body of evidence has implicated several components of the innate immune system in the pathophysiology of age-related macular degeneration. In particular, complement activation, microglial involvement, and blood-retinal-barrier disruption have been shown to play key roles in disease progression, and subsequent vision loss. This review discusses the role of the innate immune system in age-related macular degeneration as well as recent developments in single-cell transcriptomics that help advance the understanding and treatment of age-related macular degeneration. We also explore the several potential therapeutic targets for age-related macular degeneration in the context of innate immune activation.
Collapse
Affiliation(s)
- Karina Ascunce
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, United States
| | - Rahul M Dhodapkar
- Department of Ophthalmology, Roski Eye Institute, University of Southern California, Los Angeles, California
| | - Deven Huang
- Choate Rosemary Hall, Wallingford, CT, United States
| | - Brian P Hafler
- Department of Ophthalmology and Visual Science, Yale University, New Haven, CT, United States.,Department of Pathology, Yale University, New Haven, CT, United States
| |
Collapse
|
8
|
Ye J, Yang P, Yang Y, Xia S. Complement C1s as a diagnostic marker and therapeutic target: Progress and propective. Front Immunol 2022; 13:1015128. [PMID: 36275687 PMCID: PMC9582509 DOI: 10.3389/fimmu.2022.1015128] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
The molecules of the complement system connect the effectors of innate and adaptive immunity and play critical roles in maintaining homeostasis. Among them, the C1 complex, composed of C1q, C1r, and C1s (C1qr2s2), is the initiator of the classical complement activation pathway. While deficiency of C1s is associated with early-onset systemic lupus erythematosus and increased susceptibility to bacteria infections, the gain-of- function variants of C1r and C1s may lead to periodontal Ehlers Danlos syndrome. As C1s is activated under various pathological conditions and associated with inflammation, autoimmunity, and cancer development, it is becoming an informative biomarker for the diagnosis and treatment of a variety of diseases. Thus, more sensitive and convenient methods for assessing the level as well as activity of C1s in clinic samples are highly desirable. Meanwhile, a number of small molecules, peptides, and monoclonal antibodies targeting C1s have been developed. Some of them are being evaluated in clinical trials and one of the antibodies has been approved by US FDA for the treatment of cold agglutinin disease, an autoimmune hemolytic anemia. In this review, we will summarize the biological properties of C1s, its association with development and diagnosis of diseases, and recent progress in developing drugs targeting C1s. These progress illustrate that the C1s molecule is an effective biomarker and promising drug target.
Collapse
Affiliation(s)
- Jun Ye
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
- Center for Translational Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Peng Yang
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yili Yang
- China Regional Research Centre, International Centre of Genetic Engineering and Biotechnology, Taizhou, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
- *Correspondence: Sheng Xia,
| |
Collapse
|